
Mathematical Modeling Project:

BCS Computer Rankings

Landon Carter, Calvin Deng, Jason Liang

October 26, 2012

Abstract

In this paper, we introduce three methods to rank teams in a sparse schedule (meaning that the
number of games played per team is small compared to the number of teams). One such example
is the BCS system, in which 124 teams play an average of 12-13 games. The BCS rankings
determine which universities will be allocated millions of dollars in revenue from profitable
college football bowl games. Recent controversy has surrounded the algorithms used in part
to determine the BCS rankings, citing their differences from human polls. We develop new
metrics that include more factors, such as score and various offensive and defensive statistics,
than computers currently take into account. Our use of more data to rank teams result in the
generation of rankings that are more in agreement with human rankings.

1 Problem

College football rankings for the FBS (Football Bowl Subdivision) have been a subject of controversy
since they were first used in the early 2000s. The currently used official poll is the BCS (Bowl
Championship Subdivision) Ranking. This ranking system takes into account two human polls:
the Coaches’ Poll and the Harris Poll, and six different computer rankings.

One main difficulty with comparing teams under the BCS standings is that there are relatively few
games compared to the number of teams. Contrast this with college basketball, where teams often
play 2 to 3 times more games, and the NFL, where there are about as many games but a fourth
as many teams. Indeed, different ranking systems will give different rankings for the teams in the
BCS standings, and we aim to make a more accurate system ranking

All of the current computer algorithms are based on win-loss record and strength of schedule,
which is determined by the win-loss record of a team’s opponents. A few rankings take preseason
projections into account, but decrease its importance as the season goes on. No computer ranking
factors in points scored in order to discourage running up scores, and no ranking accounts for other
statistics such as total offensive yards, sacks, etc. The difficulty with only ranking teams by win-loss
record in college football is that very few games are played, so there is not a large sample size (as
mentioned before).

For many years, critics have complained that the computers do not generate accurate rankings,
citing the discrepancies between human and computer polls. We aim to develop new computer
algorithms that take into account factors that the the ranking systems currently in use do not, in
order to more closely mimic human polls.

For comparison with our calculated rankings, here are the BCS, Sagarin (a computer ranking), and
Harris rankings, current as of Friday, October 26:
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Ranking BCS Team W L Sagarin Team W L Harris Team W L

1 Alabama 7 0 Alabama 7 0 Alabama 7 0

2 Florida 7 0 Florida 7 0 Oregon 7 0

3 Kansas St. 7 0 Oklahoma 5 1 Florida 7 0

4 Oregon 7 0 Oregon 7 0 Kansas St. 7 0

5 Notre Dame 7 0 Kansas St. 7 0 Notre Dame 7 0

6 LSU 7 1 Notre Dame 7 0 LSU 7 1

7 Oregon St. 6 0 Texas A&M 5 2 Oklahoma 5 1

8 Oklahoma 5 1 South Carolina 6 2 Oregon St. 6 0

9 USC 6 1 Texas Tech 6 1 USC 6 1

10 Georgia 6 1 Florida St. 7 1 Florida St. 7 1

11 Mississippi St. 7 0 LSU 7 1 Georgia 6 1

12 Florida St. 7 1 USC 6 1 Mississippi St. 7 0

13 South Carolina 6 2 Oregon St. 6 0 Clemson 7 1

14 Texas Tech 6 1 Stanford 5 2 Louisville 7 0

15 Rutgers 7 0 Arizona St. 5 2 Rutgers 7 0

16 Louisville 7 0 Texas 5 2 South Carolina 6 2

17 Stanford 5 2 Michigan 5 2 Texas Tech 6 1

18 Clemson 7 1 Ohio St.1 8 0 Stanford 5 2

19 West Virginia 5 2 TCU 5 2 Boise St. 6 1

20 Texas A&M 5 2 Oklahoma St. 4 2 Michigan 5 2

21 Boise St. 6 1 Georgia 6 1 Texas A&M 5 2

22 Michigan 5 2 Mississippi St. 7 0 West Virginia 5 2

23 Texas 5 2 Clemson 6 1 Ohio 7 0

24 Ohio 7 0 Arizona 4 3 Texas 5 2

25 Wisconsin 6 2 Rutgers 7 0 TCU 5 2

This problem is of vital importance because the final BCS Rankings help determine the participants
in the five BCS Bowls: the National Championship, Rose, Orange, Sugar, and Fiesta. Teams that
are selected to play in these games gain millions of dollars in revenue for their school, so fair
allocation of these valuable spots is of prime importance in the intercollegiate athletics landscape.

2 Assumptions

Assumption 1. There are two subdivisions of Division I college football: the FBS (Football
Bowl Subdivision) and FCS (Football Championship Subdivision). For our purposes, we focused
on FBS teams because only they are eligible for BCS bowls. However, FBS teams play FCS teams,
so in order to simplify the ranking system we discounted all games played between FBS and FCS
teams. This simplified the ranking but also introduced some inaccuracy into the standings.

Assumption 2. In Model 3, we assume that all statistics have some correlation with the result
of a game. This is justified because the large amount of data that we have minimizes random
correlations.

1Ohio St. is not eligible to be ranked in the BCS poll due to violations the program has incurred. However, we
have chosen to show it in our rankings and models for completeness.
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3 Definitions

Before proceeding, we provide a few definitions.

Definition 1. We define Gt to be the number of games team t has played.

Definition 2. We define Ot to be the set of all opponents of team t.

Definition 3. We define Wt to be the number of wins team t has, and Lt to be the number of
losses team t has.

Definition 4. We define i � j to be team i beating team j, and i ≺ j to be team i losing to team
j.

4 Models

4.1 Model 1: Iterated Strength of Schedule

In this most basic model, we develop a self-consistent ranking based on win-loss record. In this
metric, we take into account both win-loss record and strength of schedule. Thus we have our
metric:

Rt =
Wt +

∑
o∈O Ro

2Gt

We iterate this metric, reassigning team ratings until we reach a stable point. Once the metric has
stabilized, the teams are ranked in descending order. The result is a value between 0 and 1 that
shows both how many wins each team has and the strength of the teams each team has played.

The primary purpose of Model 1 is as a stepping stone for a later Model (Model 3)

Here is the current ranking for Model 1:
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Ranking Team W L Rating

1 Notre Dame 7 0 0.7747

2 Florida 7 0 0.7717

3 Kansas St. 7 0 0.7655

4 Oregon St. 6 0 0.7573

5 Oregon 7 0 0.7543

6 Alabama 7 0 0.7521

7 Ohio St. 8 0 0.7381

8 Rutgers 7 0 0.7202

9 Mississippi St. 7 0 0.7140

10 Texas Tech 6 1 0.7009

11 Louisville 7 0 0.6970

12 LSU 7 1 0.6873

13 Ohio 7 0 0.6778

14 Oklahoma 5 1 0.6762

15 USC 6 1 0.6582

16 Boise St. 6 1 0.6564

17 Toledo 7 1 0.6558

18 Florida St. 7 1 0.6533

19 Stanford 5 2 0.6498

20 Georgia 6 1 0.6475

21 Clemson 6 1 0.6386

22 South Carolina 6 2 0.6377

23 Tulsa 7 1 0.6364

24 Louisiana Tech 6 1 0.6309

25 Cincinnati 5 1 0.6274

4.2 Model 2: Probabilistic

In our next approach, we assign a power rating to teams with the goal of maximizing the probability
that the current situation happens. We assume that if team 1 has a rating of r1 and team 2 has
a rating of r2, then team 1 wins with probability P (r1, r2) = er1

er1+er2 = 1
1+er2−r1

. In addition,

we assume that the teams follow a normal distribution, N(x) = 1
σ
√
2π
e−

x2

σ2 . Thus the probability

distribution given a set of ratings r1, r2, . . . , rN and games g1 = (w1, l2), . . . , gm = (wm, lm) (where
i, j ∈ {1, 2, . . . , N}) is proportional to

p(r1, r2, . . . , rn) ∼ f(r1, r2, . . . , rn) = e

∑N
i=1 r

2
i

σ2

m∏
i=0

1

1 + erli−rwi

This model aims to maximize the above quantity.

To do this, note that for each variable rk,

f =

e−∑
i6=k r

2
i

σ2

∏
k 6∈gi

1

1 + erli−rwi

(e− r2kσ2 ∏
k�i

1

1 + eri−rk

∏
k≺i

1

1 + erk−ri

)
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Here the first product is independent of the variable rk. Thus we have

∂f

∂rk
=

e−∑
i 6=k r

2
i

σ2

∏
k 6∈gi

1

1 + erli−rwi

 ∂

∂rk

(
e−

r2k
σ2

∏
k�i

1

1 + eri−rk

∏
k≺i

1

1 + erk−ri

)

However,

∂
∂rk

(
e−

r2i
σ2

∏
k�i

1

1 + eri−rk

∏
k≺i

1

1 + erk−ri

)

e−
r2
i
σ2

∏
k�i

1

1 + eri−rk

∏
k≺i

1

1 + erk−ri

=

∂
∂rk

e−
r2k
σ2

e−
r2
k
σ2

−
∑
k�i

∂
∂rk

(1 + eri−rk)

1 + eri−rk
−
∑
k≺i

∂
∂rk

(1 + erk−ri)

1 + erk−ri

= − 2

σ2
rk +

∑
k�i

eri−rk

1 + eri−rk
−
∑
k≺i

erk−ri

1 + erk−ri

= − 2

σ2
rk +

∑
k�i

1

1 + erk−ri
−
∑
k≺i

1

1 + eri−rk

Since at every local maximum of f , we must have ∂f
∂rk

= 0 for all k, by the above equation we get

rk =
σ2

2

(∑
k�i

1

1 + erk−ri
−
∑
k≺i

1

1 + eri−rk

)

for all 1 ≤ k ≤ N at a local maximum.

We determine values for the power ratings r1, r2, . . . , rN by using repeated iteration with binary

search on a computer and the fact that − 2

σ2
rk +

∑
k�i

1

1 + erk−ri
−
∑
k≺i

1

1 + eri−rk
is decreasing in

rk. Sorting these power ratings in order gives us our desired ranking. We get consistent numbers
every time we run our program, so we assume (but as of now cannot prove) that the above system
has only one solution.

In this model, a major consideration is the value of σ. We notice that a larger σ places greater
emphasis on strength of schedule, while a smaller σ places smaller emphasis on win-loss record.
Here is the correlation constant between win-loss record and rating for the teams for various values
of σ:

σ r2 σ r2

0.5 0.9567 5.0 0.7418

1.0 0.9309 5.5 0.7301

1.5 0.8955 6.0 0.7196

2.0 0.8619 6.5 0.7102

2.5 0.8331 7.0 0.7017

3.0 0.8087 7.5 0.6940

3.5 0.7881 8.0 0.6869

4.0 0.7704 8.5 0.6804

4.5 0.7552 9.0 0.6743

Here is the ranking we get when we set σ = 5.0:
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Ranking Team W L Rating

1 Florida 7 0 5.2064

2 Kansas St. 7 0 4.8286

3 Notre Dame 7 0 4.2823

4 Oregon St. 6 0 3.9919

5 LSU 7 1 3.9754

6 Oregon 7 0 3.9673

7 Alabama 7 0 3.9516

8 Oklahoma 5 1 3.7047

9 Ohio St. 8 0 3.5572

10 Texas Tech 6 1 3.1994

11 Mississippi St. 7 0 2.9953

12 South Carolina 6 2 2.9910

13 Ohio 7 0 2.7098

14 Rutgers 7 0 2.6562

15 Stanford 5 2 2.6073

16 Louisville 7 0 2.6071

17 Texas A&M 5 2 2.4770

18 West Virginia 5 2 2.4670

19 Georgia 6 1 2.4268

20 Arizona 4 3 2.3326

21 USC 6 1 2.1561

22 Michigan 5 2 2.0829

23 Texas 5 2 2.0568

24 Toledo 7 1 1.8079

25 Nebraska 5 2 1.7007

Note that like in Model 1 and BCS computers, this ranking only considers wins and losses.

4.3 Model 3: Analytic Hierarchy Process

We take into account other statistics besides score and win-loss record in this model. This will
allow computer and human polls to be more in agreement with each other, since human perception
of teams is not only based on their win-loss record and strength of schedule. For example, the con-
sensus number one team throughout the season, according to human rankings, has been Alabama,
yet it has never occupied the top spot in the average computer rankings. The high placement of
Alabama in human rankings is mainly due to the perceived strength of its defense, which is the
best in the country by nearly every statistical measure.

In order to account for offensive and defensive statistics when evaluating teams, we use an analytic
hierarchy process to produce an accurate ranking. This technique has been analyzed and has been
found to be statistically justified [1]. To produce pairwise comparison matrices, we first analyzed
65 different game statistics to determine correlations between specific statistics and winning games
[2].

Let pi be the probability that in a game, the team with the more desirable value of statistic i wins
the game.

Let gj be the modified percentage of games played in which team j has a more desirable value of

a statistic than their opponent according to Laplace’s rule of succession (that is, gj =
wj+0.5tj+1
wj+lj+tj+2 ,
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where wj , lj , tj are the wins, losses and ties in each category for team j)

We then used the method from Model 1 to calculate new ratings g′j for each statistic.

In the pairwise comparison matrix for criteria, aij = pi−0.5
pj−0.5 for criteria i and j. For the pairwise

comparison matrices comparing the alternatives, bij =
g′i
g′j

.

The pairwise comparison matrices are then processed using standard methods to calculate priori-
ties, then teams are ranked with larger priorities corresponding to higher ranks.

Here are the top 25 teams under the new calculated rankings:

Ranking Team W L Rating

1 Alabama 7 0 0.05452

2 Oregon 7 0 0.04991

3 Kansas St. 7 0 0.04777

4 Notre Dame 7 0 0.04766

5 Florida 7 0 0.04718

6 LSU 7 1 0.04516

7 South Carolina 6 2 0.04455

8 Ohio St. 8 0 0.04399

9 Oregon St. 6 0 0.04398

10 Florida St. 7 1 0.04387

11 USC 6 1 0.04327

12 Mississippi St. 7 0 0.04249

13 Oklahoma 5 1 0.04188

14 Ohio 7 0 0.04179

15 Rutgers 7 0 0.04166

16 Arizona St. 5 2 0.04118

17 Stanford 5 2 0.04092

18 Texas A&M 5 2 0.04034

19 Texas Tech 6 1 0.04025

20 Wisconsin 6 2 0.03998

21 Boise St. 6 1 0.03973

22 Louisiana Tech 6 1 0.03915

23 Michigan 5 2 0.03848

24 Tulsa 7 1 0.03845

25 Toledo 7 1 0.03835

5 Results

Here are the rankings that we determined from Models 2 and 3, as compared to the BCS rankings
(Model 1 is omitted as it is primarily used as a stepping stone to Model 3).
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Ranking BCS Team W L Probabilistic Team W L AHP Team W L

1 Alabama 7 0 Florida 7 0 Alabama 7 0

2 Florida 7 0 Kansas St. 7 0 Oregon 7 0

3 Kansas St. 7 0 Notre Dame 7 0 Kansas St. 7 0

4 Oregon 7 0 Oregon St. 6 0 Notre Dame 7 0

5 Notre Dame 7 0 LSU 7 1 Florida 7 0

6 LSU 7 1 Oregon 7 0 LSU 7 1

7 Oregon St. 6 0 Alabama 7 0 South Carolina 6 2

8 Oklahoma 5 1 Oklahoma 5 1 Ohio St. 8 0

9 USC 6 1 Ohio St. 8 0 Oregon St. 6 0

10 Georgia 6 1 Texas Tech 6 1 Florida St. 7 1

11 Mississippi St. 7 0 Mississippi St. 7 0 USC 6 1

12 Florida St. 7 1 South Carolina 6 2 Mississippi St. 7 0

13 South Carolina 6 2 Ohio 7 0 Oklahoma 5 1

14 Texas Tech 6 1 Rutgers 7 0 Ohio 7 0

15 Rutgers 7 0 Stanford 5 2 Rutgers 7 0

16 Louisville 7 0 Louisville 7 0 Arizona St. 5 2

17 Stanford 5 2 Texas A&M 5 2 Stanford 5 2

18 Clemson 7 1 West Virginia 5 2 Texas A&M 5 2

19 West Virginia 5 2 Georgia 6 1 Texas Tech 6 1

20 Texas A&M 5 2 Arizona 4 3 Wisconsin. 6 2

21 Boise St. 6 1 USC 6 1 Boise St. 6 1

22 Michigan 5 2 Michigan 5 2 Louisiana Tech 6 1

23 Texas 5 2 Texas 5 2 Michigan 5 2

24 Ohio 7 0 Toledo 7 1 Tulsa 7 1

25 Wisconsin 6 2 Nebraska 5 2 Toledo 7 1

6 Analysis of Solution

There are two methods by which we can analyze our rankings: first, by comparing to other ranking
methods; and second, by predicting the results of games. By comparison, we notice that our two
win/loss models closely resemble the rankings presented by other computer ranking systems. We
also notice that the results of Model 3 are similar to both human polls used to determine the BCS
rankings. This indicates that the model is a better approximation of the true rankings, because
we are able to factor in as many or more statistics than humans can, then rank the teams in a
mathematically justifiable and exact way. This is the ideal all computer ranking systems hope to
achieve: to be able to rank teams using as many or more statistics as humans, without any of bias
or emotion clouding the judgement.

7 Future Work

Our current models all work in a so-called “black and white” mode, where all wins and losses are
the same, regardless of how lopsided the result is. One way to account for large disparities in score
would be to give each win or loss a weight based on how lopsided the win is.

One other way our model could be improved is to extend the probabilistic model (Model 2) to
Model 3, which currently implements Model 1 when making modified ratings for each category.
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8 Conclusions

In this paper, we have introduced several methods to rank teams in a league with a sparse schedule.
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