
2.086 Final Project:
Parameter Fitting and Sensitivity Analysis

for Differential Systems of Motion

Landon Carter

December 10, 2014

Abstract

Many problems in science and technology can be modelled more easily via
differential equations than directly modelled, and many of these differential
equations are insoluble symbolically. This leaves numerical simulation as the
only route towards modelling the problem. Here we utilize MATLAB to set up a
generally applicable method for modelling these problems and fitting starting
parameters to data. Using a falling ball and a swinging pendulum as two
example problems, we analyze the sensitivity of the example models to these
starting parameters as well as providing an error analysis of the results.

1 Problem Statement

1.1 Motivation and Objective

Many problems in science and technology are modelled more easily via differential
equations than by direct models, so being able to solve differential equations is an
important tool in any scientist’s toolkit. Unfortunately, many scientifically interest-
ing differential systems are insoluble and require numeric methods to approximate
solutions. Many of these differential equations include fitting parameters - constants
that must be fit to individual datasets.

In this work, we model two example systems, implementing a fast and robust
method to numerically solve the differential equations given fitting parameters, im-
plementing a method to fit the fitting parameters given starting values, and finally a
method to test many starting values to ensure a global minimum fit is reached.

1.2 Mathematical Formulation

In general, we are given an ordinary differential equation of X as function of t. This
differential equation may be of any order, linear or nonlinear. In this work, we

1



consider two second-order nonlinear equations - one modelling the motion of a falling
ball with air resistance, and one modelling the motion of a swinging pendulum with
air resistance.

Next, we define β - the set of fitting parameters required to numerically solve the
differential equations.

In order to fit β, we adopt an objective function which should be minimized over
β.

J(β) ≡
m∑
i=1

(Xmeas
i −Xmodel(ti; β))2

Clearly J(β) is minimized when Xmeas
i = Xmodel(ti; β). The differential equations we

will be examining are described below.

1.2.1 Falling Ball

In this case, we will be examining the motion of a falling ball, modelled by
d2Z

dt2
+ α

dZ

dt

∣∣∣∣dZdt
∣∣∣∣ = −g, 0 < t ≤ 0.6s

Z(0) = 1.997m,
dZ

dt
(0) = Ż0

,

Where Z is the height of the ball in meters, g is the magnitude of the acceleration of
gravity, 9.81m/s2, and α is given by

α ≡
1
2
CDρairAfrontal

mball

.

Here CD is the drag coefficient, ρair is the density of air, Afrontal is the projected area
of the ball in the direction of motion, and mball = 0.014kg is the mass of the ball.
Note our ball is roughly spherical, hence Afrontal = πr2

ball, for rball = 0.0508m.
Based on this formulation, β = (Ż0 α)T.

1.2.2 Swinging Pendulum

In this case, we will be examining the motion of a swinging pendulum, modelled by
d2θ

dt2
+

g

Leff

sin(θ) + α
dθ

dt

∣∣∣∣dθdt
∣∣∣∣ = 0, 0 < t ≤ tfinal

θ(0) = θ0,
dθ

dt
(0) = ˙theta0

.

Here θ(t) is the angular position of the pendulum bob in radians, g is the magnitude
of acceleration of gravity, 9.81m/s2, Leff is the effective length associated with the (in

2



actuality) compound pendulum of interest, α is a parameter related to the aerody-
namic drag on the pendulum bob, and θ0 and θ̇0 are the initial angular displacement
and angular velocity of the pendulum, respectively.

Based on this formulation, β = (θ0 θ̇0 α Leff)T. We are further given that 0 ≤ α ≤
0.02, and that the theoretical value of Leff = 0.7857m. We may also estimate θ0 and
θ̇0 based on the experimental data provided.

1.2.3 Goals

Mathematically, we would like to develop methodology to rapidly set up solutions to
any ODE with fitting parameters, as well as methodology to quickly set up method
to find fitting parameters even given a range of potential starting values. We also
provide commentary on the efficiency of parallelization on the fitting of parameters
given a range of starting values.

In order to accomplish this, we apply this to our two model systems, as well
as summarizing the general procedure in the conclusions. In conjunction with this,
we will analyze the sensitivity of J(β) to small fluctuations in β for the swinging
pendulum.

2 Computational Methodology

Our basic computational methodology is described in the flowchart below: [h] First,

Figure 1: Flowchart of basic computational methodology

we choose initial values for β. In the falling ball portion, we choose these as reasonable
values, and manually check a few other values to ensure they all converge to the same
optimal values. In the swinging pendulum portion, we fix two of the values, Leff and
θ0, based on the provided theoretical value for Leff and the provided first data point
for θ(t). We vary the other two parameters from −.005 < αest < .025 and 2 < θ̇0 < 5,
based on an initial estimate from a finite-difference approximation on the first two
data points of θ̇0 = 3.78. The modified procedure when considering a range of starting
values for β is described later.

After setting initial values for β, we run a function minimizer, fminsearch, to
minimize J(β). The function minimizer numerically solved the differential equation
using MATLAB’s built in ODE45. One caveat in this process is that ODE45 can only solve

3



first-order systems of ODE’s. Thus, to adapt it to our higher-order ODE, we redefined
it as a system of multiple first-order ODE’s, where different variables represented dX

dt

and X.
This process of fminsearch optimizing J(β) based on ODE45 is summarized by

the loop. Once fminsearch has converged, it produces a final, optimized value for β,
as well as a value for J(βopt).

The modified procedure, where we consider a range of starting values for β, is
summarized in the flowchart below: The primary modifications are setting the range

Figure 2: Flowchart of modified computational methodology

of initial β values, then running the same procedure given each starting point. After
each point has converged, the values for J(βopt) are compared and the overall best
value for β is selected.

Though not shown in the flowchart, it was additionally required to handle excep-
tions where a particular fminsearch would fail to converge. In this case, βopt was set
to (1 1 1 1)T and J(β) was set to 5 (properly converged values of J(β) were in the
10−2 range). Because the results were then filtered to select the best convergence, all
unconverged values were excluded from the final result.

In this modified procedure, it was additionally possible to parallelize the processing
of different initial β values, using MATLAB’s built-in parfor loop instead of the single-
threaded for built-in. This allowed for a dramatic increase in speed on my quad-core
computer. Those with access to more computational resources, especially a MATLAB

compute pool, can experience nearly linear scale-ups in speed though parallelization.

3 Results

In the general case, we have now described a methodology and developed a framework
for rapidly setting up and solving ODE’s with fitting parameters, even given a range
of starting values for the fitting parameters.

4



Additionally, we have applied these methodologies to our two model systems,
achieving a well-converged value for β in each case, as well as achieving confidence
that our value is well-converged and accurate.

First, we present results for the falling ball, illustrating application of the method
described above to a simple system that does not require convergence testing. Next,
we present results for the swinging pendulum, illustrating application of the method
described above to a system that requires multiple starting values for β optimization
in order to find a global minimum for J(β).

After going through the simple results of our models, we move to the sensitivity
analysis, presenting a map of convergence for the swinging pendulum as well as a
map of sensitivity of J(β) to fluctuations in β.

Finally, we provide commentary on the effectivness of parallelization of the mul-
tiple β starting values variation.

3.1 Model Results

3.1.1 Falling Ball

Figure 3: Falling Ball: simulation vs experiment

As can be seen in figure 3, the simulation results for the falling ball closely match
the experimental results.

The final values for β, given an initial value for fminsearch of βinitial = (−1 .02)T,
were as follows:

β = (Ż0 α)T = (−0.4283 0.0444)T

5



This led to a value of J(β) = 2.9310e − 5. This very small value of J(β) gives us
confidence in our fitting parameters. Furthermore, repeating the minimization with
βinitial = (−.5 .05)T, and βinitial = (−1.5 0)T also yielded the same converged result to
within a predefined tolerance of 10−4.

3.1.2 Swinging Pendulum

Figure 4: Swinging Pendulum: simulation vs experiment

As can be seen in figure 4, the simulation results for the falling ball closely match
the experimental results.

The final values for β, given an initial value range for fminsearch of βinitial =
(0.4689 (2, 5) (−.005, 0.025) .7857)T, were as follows:

β = (θ0 θ̇0 α Leff)T = (0.4551 3.9596 0.0071 0.7832)T

This led to a value of J(β) = 0.0703. This very small value of J(β), along with our
many-starting-values procedure, gives us confidence in our final fitting parameters.

Using these final fitting parameters, we predict a value of θ(61.13) = −0.4129.

3.2 Sensitivity Analysis

3.2.1 Convergence

In order to analyze the sensitivity, we must first confirm that not all reasonable
starting values for β converge to the same final value. Therefore, using our many-
starting-values procedure to generate β values for a range of βinitial as well as a value
for J(β) in each case, we generate a contour plot of the final values of J(β) as a
function of the βinitial values.

6



Figure 5: Map of the converged values of J(β) as a function of βinitial, varying θ̇0 and
α. For βinitial that did not converge, J(β) = 5 was set.

As can be seen by figure 5, not all values of βinitial converged to the same place,
and many did not converge at all. This reveals both the effectiveness of our many-
starting-values procedure as well as the necessity of this procedure. Though one may
try a “hit and miss” strategy to find a working βinitial, only by testing a very large set
of βinitial can we be sure we have reached the global minimum.

3.2.2 Sensitivity

In order to show the necessity of actually applying fminsearch as well as to examine
the sensitivity of J(β) with respect to fluctuations in β, we present the following two
plots: Clearly, the values of J(β) observed here are significantly higher than those
found in the optimized functions. Clearly also, they vary significantly across different
values of β, so we know that J(β) is a sensitive measure to fluctuations in β.

7



Figure 6: Plot of J(β) of
various values of β without
applying fminsearch.

Zooming in on the solution (figure 7, on the following page), we again calculate
J(β) without applying fminsearch, which allows us to see the local variations and be
sure that we have converged well. This also reveals to us that this particular model is
more sensitive to fluctuations in θ̇0 per order of magnitude than α - this makes sense,
given that changing α will only slightly affect the later magnitudes, while changing
θ̇0 will essentially offset all results, changing the overall outcome significantly.

3.2.3 Parallelization

Finally, a quick aside on parallelization - clearly, each of the fminsearch instances
do not rely on each other and can run simultaneously. Therefore, applying parfor

to create multiple instances of fminsearch allows us to efficiently parallelize the
multiple-starting-values procedure.

Without parallelization, it took 215.8 seconds to converge J(β) for 14 starting
values of β. With parallelization, this was reduced to a mere 56.7 seconds, running
on a quad core machine. This equates to a 380% increase in speed, at a parallelization
efficiency of 95%.

Given a more complex problem with more β parameters which are unsure, this
parallelization, especially given more robust computing resources (a MATLAB worker
pool), would allow previously untractable problems to be solved in a reasonable time-
frame.

3.3 Error Analysis

Here, we’ll take a look at the possible sources of error in our fitting.
Noise: Of course, with any measurements, there is noise associated. However,

8



Figure 7: Zoomed in plot
of J(β) of various val-
ues of β without applying
fminsearch, showing the
detail around the global
minimum.

because we fit to the entire dataset rather than a small portion, the effects of noise
will be significantly reduced. This is especially true for the swinging pendulum, where
it is key for us to get the period correct - our measure of J(β) is so sensitive to getting
a correct period that any noise will be almost completely eliminated.

Model Complexity: Our models could be over- or under-fitting the data, which
would lead to errors in our fits. Though this is possible, given the simplicity of the
systems studied, it seems unlikely that we are significantly underfitting the data.
Furthermore, because our models were based on fundamental physics principles, we
are certainly not overfitting the data.

Numerical Precision: As with any computer calculation, we will inherently be
limited by the precision of our numbers. In terms of precision of the numbers, this
is significantly minimized by setting proper tolerances in ODE45 and fminsearch. In
terms of granularity of data, we have no real control over the granularity of data
provided. Because we were able to fit the provided data accurately and with very
little residual, it can safely be concluded that the data was sufficiently non-granular
to provide an accurate fit.

4 Conclusions

Overall, we were very effective in implementing a general procedure for ODE solu-
tion given fitting parameters and a dataset to fit to. Two example systems were fit
successfully.

Furthermore, the sensitivity of J(β) was successfully analyzed in the swinging
pendulum model, as well as the convergence criteria for inputs to J(β).

9



4.1 Extensions

Though the provided examples were extremely illustrative in showing the potential
of our methods, to truly illustrate the necessity of scanning many βinitial. One such
system which would be interesting to study would the a double pendulum.

One piece which we did not cover in this work is mathematical error analysis and
confidence intervals. It would be useful when applying the presented methods to
additionally provide confidence intervals to the simulated data, allowing the methods
to be more useful to general scientific practice.

5 Appendix 1: Matlab Codes

Please see included .zip file.

10


