
Curved Crease Origami in Semi-Rigid
Materials
Landon Carter
lcarter@mit.edu

ABSTRACT
I have explored alternative material choice and manu-
facturing methods for creating curved crease origami,
and have developed a so�ware package that is useful
not just for curved crease origami, but origami in gen-
eral. I have used this so�ware package to produce a
work of art from aluminum, and have published this
so�ware with a helpful reference guide. In the pro-
cess of producing this piece, I have also optimized the
cu�ing parameters (though only for 1/32” aluminum
intended to be bent by hand).
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1 INTRODUCTION
Curved crease origami is a unique type of origami,
where creases are not straight, but curved. �is gives
curved crease origami a unique aesthetic within origami,
but also means that relatively li�le work has gone into
curved crease origami. In particular, to the author’s
knowledge, there are no so�ware packages which cur-
rently support curved crease origami.
Additionally, though there are a number of so�ware

packages designed to manipulate origami, none are op-
timized for producing �les which can be CNCmachined
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by a waterjet, laser cu�er, vinyl cu�er, or similar. Many
so�ware packages only give a visual crease pa�ern as
output, which is unsuitable for CNC manufacture. It
would be nice if there were a so�ware suite which could
be used to convert these crease pa�erns into �les useful
for CNC manufacture. Unfortunately, there are not yet
CNC creasing machines available to hobbyists or even
most universities - the only current use of CNC bend-
ing machines is in specialized sheet metal shops, or
mass manufacturing of sheet metal components. �ere-
fore, a so�ware package targeted to CNC manufacture
of origami parts should be capable of working with
vector-based through-cu�ing machines, such as the
aforementioned waterjet, laser cu�er, and vinyl cu�er.
�e unique aesthetics of curved crease origami tend

to highlight the �owing, smooth nature of paper. �ere-
fore, it would be artistically interesting to break this
connection, producing curved crease origami out of
something that is tough and strong - sheet metal. Metal
is also ductile, which will allow it to bend without snap-
ping, a critical feature for origami. Wood and almost
all materials which can be lasercut are not ductile, and
would require special, more advanced pa�erns to pro-
duce origami. �erefore, I decided to focus my e�orts
on sheet metal.

2 CURVED CREASES
Curved creases have not had much research done rela-
tive to the rest of computational origami. Some high-
lights are Hu�man’s original work, Demaine’s work,
and Koschitz’s work [1, 2]. Koschitz’s thesis in particu-
lar provides a fairly extensive review of previous work
on curved crease origami [3].
Some motivating examples of curved crease origami

for me are the work of Erik and Martin Demaine, espe-
cially the following few models, which are all based on
the original Bauhaus design of 1920’s. Some examples
are shown in Figure 1.
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(a) Computational Origami (2008)

(b) Tsunami (2009)

(c) Waterfall (2014)

Figure 1: Curved crease origami by Erik and Mar-
tin Demaine, the inspiration for this project.

3 SOFTWARE PACKAGE
�e primary piece of so�ware is a Python module for
applying cut pa�erns to SVG input �les. �e parameters
for these cut pa�erns can be easily adjusted, and custom
cut pa�erns can be used.

3.1 Parameter Input
�ere are just a few important parameters required to
de�ne the so�ware behavior. �e di�erence between
o�set cuts and custom cuts is made to be as small as
possible. Most important are the tab length and
cut length parameters, which control the discretiza-
tion. Ranges are required for these values so that the
so�ware can �nd an appropriate integer number of cuts
that can be evenly spaced to partition each crease.

tab length: A range for the length of solid tabs,
measured in pixels. �e algorithm
will try to make tabs in the middle
of this range.

cut length: A range for the length of cuts, mea-
sured in pixels. �e algorithm will
try to make cuts in the middle of
this range.

cut width: �e width of the cut, in pixels. �is
is measured normal to the crease
direction. If a cut �le is provided,
this parameter is ignored.

cut file: �e �lename for specifying a cus-
tom cut. If a simple o�set cut is
desired, this should be false.

Table 1: JSON speci�cation for the parameter in-
put �le.

Variable Name O�set Cut Sample Cut File Sample
tab length [5,10] [5, 10]
cut length [50, 60] [50, 60]
cut width 5 5 (ignored)
cut file false cut.svg
Table 2: Sample JSON inputs for both o�set cut
mode and custom cut �le mode.

3.2 So�ware Package Operation
�e full code for the so�ware is provided in Appendix A,
but I’ll highlight the functionality of a few key functions
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3.2.1 cut
Inputs: (input svg, params,

cut file=None)
�is is the main function within the module, and

controls the overall operation. �e function operates
as follows

(1) Step through each path in the input SVG.
(2) For each path in the input SVG, determine the

length, and determine a number of cuts which
will be made.

(3) For each cut, determine the start and end posi-
tions.

(4) Apply the cuts. �at involves either calling
partial offset curve orscale cut. In
partial offset curve, a positive o�set
curve and negative o�set curve are created, and
joined together to make a continuous cut.

3.2.2 partial offset curve
Inputs: (path, start t, end t,

offset distance, steps=10)
Partial o�set curve is used for o�set cuts, and follows

the curve of the path.
(1) �e path’s normal is calculated by the svgpath-

tools library, which calculates the normal by
taking the normal of the derivative of the ap-
propriate curve. Because SVG paths are de�ned
by Bezier curves, arcs, or lines, the derivative
can be easily computed symbolically.

(2) �e curve is broken into step segments, and
each point is o�set by the appropriate normal.
�ese points are then reconnected by lines, for
a close approximation. �e number of steps
can be increased to improve the �delity of the
approximation at the cost of slower running
time and larger output �les. In practice, 10 steps
was found to be su�cient for inspection by eye.
In the simple circle example, there are 20 cuts,
each with 10 steps, and a gap between, so the
10-step approximation is roughly equivalent to
a 230-gon.

3.2.3 scale cut
Inputs: (start pos, end pos, cut file)
Scale cut is used for custom cuts, and scales the input

cut �le before repositioning it appropriately.
(1) �e start and end points are used to determine

the o�set, rotation, and length of the cut.

Figure 2: Input and output for a basic circle exam-
ple with o�set curve.

(2) �e input cut �le is scaled to the correct length.
�is process is memoized to improve perfor-
mance - within a single path, the length of each
cut should be the same, and multiple paths with
the same total length will also share the same
cut length.

(3) �e rescaled cut is translated and rotated into
the correct position.

3.3 Sample In/Out
As you can see in Figures 6 and 7, the custom cut so-
lution still has some serious drawbacks. Namely, it is
unable to follow the curves, and only approximates
them via interpolation. �erefore, it does not deal well
with sharp angles or tight curves. �is is also true for
the o�set cut, but to a lesser example. �e o�set cut
can deal well with tight curves, but does not take into
account corners, and therefore may have cuts which
span these corners.

4 ART
4.1 Experimentation
Hand foldability vs strength in 1/32 aluminum was
investigated. Further experimentation in steel was
planned as well, but waterjets were unavailable when
steel stock came in. �e experimental results for alu-
minum are compiled in Table 3.

4.2 Aluminum
�e primary goal of this project was to produce an
actual piece of art, a metal curved-crease origami struc-
ture. I decided to focus on the Bauhaus design which
Erik and Martin Demaine also explored, as in Figure 1.
I thought I was reasonably successful in this endeavor,
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(a) Detail of the cut pattern.

Figure 3: Input and output for a multi-circle ex-
ample with o�set curve. �is is similar to the pat-
tern waterjetted in aluminum.

Figure 4: Cut �le used in custom cut examples.
�is is an example of a cut pattern where the tab
is designed to warp and twist in a speci�c way. In
theory, this should increase the apparent ductil-
ity of the material. In practice, this design was
unsuccessful.

Figure 5: Input and output for a basic circle exam-
ple with custom cut.

(a) Detail of the cut pattern.

Figure 6: Input and output for a multi-circle ex-
ample with custom cut.

tab l cut l Results
0.020 1.50 Too weak.
0.020 0.50 Too weak. Too many cuts (time)
0.250 1.50 Too sti�, slightly bri�le
0.150 1.00 Too sti�, not far o�
0.100 1.00 Good mix. Slightly too bri�le.

Table 3: Experimentatal results for various cut
length parameters in 1/32 aluminum. Sample
cut �les are shown in Figure 8. All �les were
scaled such that 1pt=1in, so measurements can
be thought of as inch measurements. Unfortu-
nately, svg �les make this scaling somewhat non-
apparent.

though producing a curved crease origami met with
some challenges that were not exposed during the lin-
ear testing period for perforations - namely, it was now
much harder to fold everything. I found it quite a bit
more di�cult to fold the curved creases than the equiv-
alent straight creases, and also more di�cult to handle
folding multiple creases at once. I eventually found
success by starting from the middle crease out - that
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(a) Input for the classic 6.849 example.

(b) Outputwith o�set cut applied to the 6.849 example.

(c) Output with custom cut applied to the 6.849 exam-
ple.

Figure 7: 6.849 example with o�set cut and cus-
tom cut.

Figure 8: Sample input cut patterns that were
used to test various cut parameters. From top to
bottom, they correspond to the entries in Table 3.

way, I would always have a �at surface to hold with a
pair of pliers when folding.
Unfortunately, during folding, the innermost ring

tore o�. I was afraid of this, since I was using alu-
minum, which is not the most ductile material, and
because my testing had shown a possibility for crack-
ing during even the course of a dozen or so fold/unfold
motions. Another factor likely contributing to the fail-
ure of the inner ring was the fact that it had a smaller
curvature diameter than any of the other rings - this

put extra stress on the tabs, especially in the direction
perpendicular to the normal direction - they were �exed
along the tab width, instead of the tab length.
Despite this, I wound up with a very pre�y piece of

art, and observed it following the same folding behav-
ior as paper - the 360 degrees contracted as each ring
formed a cone, exactly as expected. I was able to create
a simple “rollercoaster” loop that looks quite nice as a
desk ornament.

4.3 Steel
A�er �nishing the example in aluminum, I wanted to
create another piece in steel, including welding mul-
tiple of them together to achieve a ¿360 degree total
curvature, as Erik and Martin Demaine did in many of
their curved crease origami pieces. Unfortunately, by
the time my steel arrived, both of the waterjets that I
have access to on campus were down for maintenance
- likely from other students also trying to �nish their
�nal projects in the last week of school. I was incredibly
disappointed by this, because I was honestly looking
forward to seeing how ¿360 degrees of curvature would
look, and applying all of the lessons I learned when
folding the �rst aluminum example. I still have the
aluminum, so I’ll email you once one of the waterjets
comes back online and I manage to actually cut out a
pa�ern. I realize that won’t be able to count for this
project, but it’ll be beautiful and I already have the
material.
I was excited for steel due in particular to the be�er

ductility, which would help prevent the cracking I saw
in the aluminum example, and for the easier chance
to weld multiple pieces together. Any cracks that did
appear could also be welded back together. �ough
aluminum can be welded, it is much more di�cult, and
nearly impossible for thin aluminum. Even my best
welder friends didn’t think they were capable of weld-
ing aluminum less than 1/8” thick.

5 CONCLUSIONS
Overall, this project took quite a bit longer than I ex-
pected. �e so�ware was more di�cult to write than I
had anticipated, especially because the documentation
of the Python library I used to interface with SVG’s
was poor - in particular, I had to read through the source
code to discover a method to set the numerical toler-
ances so that my code would run in a reasonable time.
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(a) �e aesthetics were signi�cantly improved with a
bit of extra care bending back wrinkled sections and
sandblasting the piece.

Figure 9: Loop-de-loop in curved crease metal
origami.

Figure 10: �e N51 waterjet went down for main-
tenance right as my steel arrived, so I was unable
to cut a pattern out of steel. �e Makerworks wa-
terjet has been down for the past 3 or 4 weeks, so
I wasn’t able to use that either. I was very sad to
discover this.

Before se�ing the tolerance to 1e-3, it was set by de-
fault to 1e-12. Before the change, my o�set code on
the multi-circle input would take about 5 minutes to
run, and a�er the change, my o�set code took about
3-5 seconds. Ultimately, I was fairly happy with how
general the so�ware can be - the so�ware suite can be
used with any svg input �le, whereas I had originally
planned to just iterate in Solidworks and focus more
on the physical implementation. By focusing on the
so�ware, I was able to create a tool that can be used
to produce cut pa�erns for any origami. �is will be
useful for future work in metal origami, especially by
hobbyists that don’t have access to CNC bending ma-
chines. I have wri�en a comprehensive readme, and
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the code is all located at my Github repo. �e Python
code has also been a�ached as Appendix A.

6 FUTUREWORK
One of the pieces of so�ware I wanted to implement,
but did not have time to implement, was a converter
from FOLD ↔ SVG. �is would increase compatibil-
ity with other origami programs, though only slightly,
since an unfolded representation would still be neces-
sary. I also spent an undue amount of time looking into
unfolding algorithms, and found O’Rourke’s review ar-
ticle [4] very informative (namely, there are no known
good algorithms, and it is not even known if all convex
polyhedra are unfoldable). I considered implementing
a slow algorithm to test all possible unfoldings for a
speci�c input (equivalent to testing every spanning tree
on the polyhedral edge graph, which is not actually that
large - the Matrix-Tree theorem allows you to calcu-
late the number of spanning trees for a graph). Testing
each unfolding would take O(n log(n)) time by sorting
the resultant edges before comparing them. �en, the
locality of comparison can be preserved, very similarly
to the convex hull algorithm. I may implement this, as
well as the FOLD↔ SVG converter, in the future.
Another aspect of the project which I did not have

time to explore was the extension to wood and other
materials, especially laser-cu�able materials. I think
that cut pa�erns for these materials could be created
by modifying the o�set-cut method to produce multi-
ple (3-6) parallel o�set cuts. �e di�culty here would
be ensuring that the tabs don’t line up, otherwise the
connection would still be connected by a single bri�le
member. A custom cut �le could also potentially work,
though the same di�culty would occur, in addition to
the di�culties of approximating curves with straight
lines.
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A SVG TOOLS.PY

1 """SVG tools for curved crease origami."""
2 # disable warnings about variable names
3 # pylint: disable=C0103
4

5 import json
6 import cmath
7 import math
8 import sys
9 import svgpathtools as svg
10

11 def memodict(f):
12 """ Memoization decorator for a function taking a single argument.
13 From http://code.activestate.com/recipes/578231-probably-the-fastest-

memoization-decorator-in-the-/
14 """
15 class memodict(dict):
16 def __missing__(self, key):
17 ret = self[key] = f(key)
18 return ret
19 return memodict().__getitem__
20

21 def read_json_params(param_file):
22 with open(param_file, 'r') as f:
23 params = json.loads(''.join(f))
24 return params
25

26 def read_svg(input_svg_file):
27 """Reads an svg file and returns a list of svg path objects."""
28 paths, attributes = svg.svg2paths(input_svg_file)
29 return (paths, attributes)
30

31 def partial_offset_curve(path, start_t, end_t, offset_distance, steps=10):
32 nls = []
33 diff = end_t - start_t
34 for k in range(steps):
35 t = start_t + diff*k/steps
36 offset_vector = offset_distance * path.normal(t)
37 p = path.point(t)
38 # print(p)
39 nls.append(p + offset_vector)
40 connect_the_dots = [svg.Line(nls[k], nls[k+1]) for k in range(len(nls) -

1)]
41 offset_path = svg.Path(*connect_the_dots)
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42

43 return offset_path
44

45 @memodict
46 def scale_cut_file(input_tuple):
47 (scale, cut_file) = input_tuple
48 new_file = svg.Path()
49 for path in cut_file:
50 new_file.append(type(path)(*[point*scale for point in path]))
51 return new_file
52

53 def scale_cut(start_pos, end_pos, cut_file):
54 print(type(start_pos))
55 print(start_pos)
56 vec = end_pos - start_pos
57 r, theta = cmath.polar(vec)
58 (xmin, xmax, ymin, ymax) = cut_file.bbox()
59 R = xmax - xmin
60 scale = float(r)/R
61

62 mid_pos = (start_pos + end_pos)/2.0
63

64 new_file = scale_cut_file((scale, cut_file))
65

66 center = (scale*(xmin+xmax)/2.0) + (scale*(ymin+ymax)/2.0)*1j
67

68 new_file = new_file.rotated((180/math.pi)*theta, center)
69 new_file = new_file.translated(mid_pos - center)
70

71 return new_file
72

73 def cut(input_svg, params, cut_file=None):
74 print('beginning cuts')
75 l_range = params['cut_length']
76 t_range = params['tab_length']
77

78 if cut_file is None:
79 positive = svg.Path()
80 negative = svg.Path()
81 else:
82 cut_paths = []
83

84 for path in input_svg:
85 print('starting a path')
86 # calculate number of cuts
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87 pathlength = float(path.length(error=1e-3))
88 maxcuts = pathlength/(l_range[0]+t_range[0])
89 mincuts = pathlength/(l_range[1]+t_range[1])
90 ncuts = int((mincuts + maxcuts)/2)
91 if ncuts == 0:
92 print path
93 print pathlength
94 ltotal = pathlength/ncuts
95 l = max(ltotal - (t_range[0] + t_range[1])/2, l_range[0])
96 t = ltotal - l
97 print('there are %s cuts' % ncuts)
98

99 # accumulate segments
100 for i in range(ncuts):
101 print("%s/%s" % (ltotal*i, pathlength))
102 cut_start = path.ilength(ltotal*i, s_tol=1e-3, error=1e-3)
103 cut_end = path.ilength(ltotal*(i+1) - t, s_tol=1e-3, error=1e-3)
104 if cut_file is None:
105 positive.append(partial_offset_curve(path, cut_start, cut_end

,
106 params['cut_width']/2))
107 negative.append(partial_offset_curve(path, cut_start, cut_end

,
108 -params['cut_width']/2))
109 else:
110 cut_start = path.point(cut_start)
111 cut_end = path.point(cut_end)
112 cut_paths.append(scale_cut(cut_start, cut_end, cut_file))
113 print('cut a path')
114

115 if cut_file is None:
116 print('number of segments: %s' % len(positive))
117 else:
118 print('number of segments: %s' % len(cut_paths))
119

120 if cut_file is None:
121 cut_paths = []
122 for i in range(len(positive)):
123 pos_path = positive[i]
124 neg_path = negative[i]
125 pos_path.append(svg.Line(pos_path[-1].end, neg_path[-1].end))
126 pos_path.extend(neg_path[::-1])
127 pos_path.append(svg.Line(neg_path[0].start, pos_path[0].start))
128 cut_paths.append(svg.Path(*pos_path))
129
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130 return cut_paths
131

132

133 if __name__ == '__main__':
134 """ Usage: python svg_tools.py params.json in.svg out.svg """
135 cut_param_file = sys.argv[1] if len(sys.argv) > 1 else 'params.json'
136 input_svg_file = sys.argv[2] if len(sys.argv) > 2 else 'in.svg'
137 output_svg_file = sys.argv[3] if len(sys.argv) > 3 else 'out.svg'
138

139

140 params = read_json_params(cut_param_file)
141 input_cut_file = params['cut_file']
142

143 (input_svg, svg_attributes) = read_svg(input_svg_file)
144 print input_svg
145

146 if input_cut_file:
147 (input_cut, cut_attributes) = read_svg(input_cut_file)
148 print input_cut[0]
149 output_paths = cut(input_svg, params, input_cut[0])
150 else:
151 output_paths = cut(input_svg, params)
152

153 svg.wsvg(output_paths, 'r'*len(output_paths), filename=output_svg_file)
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