
Curved Crease Origami in Semi-Rigid
Materials
Landon Carter
lcarter@mit.edu

ABSTRACT
I have explored alternative material choice and manu-
facturing methods for creating curved crease origami,
and have developed a so�ware package that is useful
not just for curved crease origami, but origami in gen-
eral. I have used this so�ware package to produce a
work of art from aluminum, and have published this
so�ware with a helpful reference guide. In the pro-
cess of producing this piece, I have also optimized the
cu�ing parameters (though only for 1/32” aluminum
intended to be bent by hand).
ACM Reference format:
Landon Carter. 2017. Curved Crease Origami in Semi-Rigid
Materials. In Proceedings of Geometric Folding Algorithms,
Cambridge, Massachuse�s USA, May 2017 (6.849’17), 11 pages.
DOI: xxxxxxxxxxxxxxxxxxxxxx

1 INTRODUCTION
Curved crease origami is a unique type of origami,
where creases are not straight, but curved. �is gives
curved crease origami a unique aesthetic within origami,
but also means that relatively li�le work has gone into
curved crease origami. In particular, to the author’s
knowledge, there are no so�ware packages which cur-
rently support curved crease origami.
Additionally, though there are a number of so�ware

packages designed to manipulate origami, none are op-
timized for producing �les which can be CNCmachined

Permission to make digital or hard copies of all or part of this
work for personal or classroom use is granted without fee provided
that copies are not made or distributed for pro�t or commercial
advantage and that copies bear this notice and the full citation
on the �rst page. Copyrights for components of this work owned
by others than ACM must be honored. Abstracting with credit is
permi�ed. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior speci�c permission and/or a fee.
Request permissions from permissions@acm.org.
6.849’17, Cambridge, Massachuse�s USA
© 2017 ACM. xxxxxxxxxxxxxxxxxx.
DOI: xxxxxxxxxxxxxxxxxxxxxx

by a waterjet, laser cu�er, vinyl cu�er, or similar. Many
so�ware packages only give a visual crease pa�ern as
output, which is unsuitable for CNC manufacture. It
would be nice if there were a so�ware suite which could
be used to convert these crease pa�erns into �les useful
for CNC manufacture. Unfortunately, there are not yet
CNC creasing machines available to hobbyists or even
most universities - the only current use of CNC bend-
ing machines is in specialized sheet metal shops, or
mass manufacturing of sheet metal components. �ere-
fore, a so�ware package targeted to CNC manufacture
of origami parts should be capable of working with
vector-based through-cu�ing machines, such as the
aforementioned waterjet, laser cu�er, and vinyl cu�er.
�e unique aesthetics of curved crease origami tend

to highlight the �owing, smooth nature of paper. �ere-
fore, it would be artistically interesting to break this
connection, producing curved crease origami out of
something that is tough and strong - sheet metal. Metal
is also ductile, which will allow it to bend without snap-
ping, a critical feature for origami. Wood and almost
all materials which can be lasercut are not ductile, and
would require special, more advanced pa�erns to pro-
duce origami. �erefore, I decided to focus my e�orts
on sheet metal.

2 CURVED CREASES
Curved creases have not had much research done rela-
tive to the rest of computational origami. Some high-
lights are Hu�man’s original work, Demaine’s work,
and Koschitz’s work [1, 2]. Koschitz’s thesis in particu-
lar provides a fairly extensive review of previous work
on curved crease origami [3].
Some motivating examples of curved crease origami

for me are the work of Erik and Martin Demaine, espe-
cially the following few models, which are all based on
the original Bauhaus design of 1920’s. Some examples
are shown in Figure 1.



6.849’17, May 2017, Cambridge, Massachuse�s USA Landon Carter

(a) Computational Origami (2008)

(b) Tsunami (2009)

(c) Waterfall (2014)

Figure 1: Curved crease origami by Erik and Mar-
tin Demaine, the inspiration for this project.

3 SOFTWARE PACKAGE
�e primary piece of so�ware is a Python module for
applying cut pa�erns to SVG input �les. �e parameters
for these cut pa�erns can be easily adjusted, and custom
cut pa�erns can be used.

3.1 Parameter Input
�ere are just a few important parameters required to
de�ne the so�ware behavior. �e di�erence between
o�set cuts and custom cuts is made to be as small as
possible. Most important are the tab length and
cut length parameters, which control the discretiza-
tion. Ranges are required for these values so that the
so�ware can �nd an appropriate integer number of cuts
that can be evenly spaced to partition each crease.

tab length: A range for the length of solid tabs,
measured in pixels. �e algorithm
will try to make tabs in the middle
of this range.

cut length: A range for the length of cuts, mea-
sured in pixels. �e algorithm will
try to make cuts in the middle of
this range.

cut width: �e width of the cut, in pixels. �is
is measured normal to the crease
direction. If a cut �le is provided,
this parameter is ignored.

cut file: �e �lename for specifying a cus-
tom cut. If a simple o�set cut is
desired, this should be false.

Table 1: JSON speci�cation for the parameter in-
put �le.

Variable Name O�set Cut Sample Cut File Sample
tab length [5,10] [5, 10]
cut length [50, 60] [50, 60]
cut width 5 5 (ignored)
cut file false cut.svg
Table 2: Sample JSON inputs for both o�set cut
mode and custom cut �le mode.

3.2 So�ware Package Operation
�e full code for the so�ware is provided in Appendix A,
but I’ll highlight the functionality of a few key functions



Curved Crease Origami in Semi-Rigid Materials 6.849’17, May 2017, Cambridge, Massachuse�s USA

3.2.1 cut
Inputs: (input svg, params,

cut file=None)
�is is the main function within the module, and

controls the overall operation. �e function operates
as follows

(1) Step through each path in the input SVG.
(2) For each path in the input SVG, determine the

length, and determine a number of cuts which
will be made.

(3) For each cut, determine the start and end posi-
tions.

(4) Apply the cuts. �at involves either calling
partial offset curve orscale cut. In
partial offset curve, a positive o�set
curve and negative o�set curve are created, and
joined together to make a continuous cut.

3.2.2 partial offset curve
Inputs: (path, start t, end t,

offset distance, steps=10)
Partial o�set curve is used for o�set cuts, and follows

the curve of the path.
(1) �e path’s normal is calculated by the svgpath-

tools library, which calculates the normal by
taking the normal of the derivative of the ap-
propriate curve. Because SVG paths are de�ned
by Bezier curves, arcs, or lines, the derivative
can be easily computed symbolically.

(2) �e curve is broken into step segments, and
each point is o�set by the appropriate normal.
�ese points are then reconnected by lines, for
a close approximation. �e number of steps
can be increased to improve the �delity of the
approximation at the cost of slower running
time and larger output �les. In practice, 10 steps
was found to be su�cient for inspection by eye.
In the simple circle example, there are 20 cuts,
each with 10 steps, and a gap between, so the
10-step approximation is roughly equivalent to
a 230-gon.

3.2.3 scale cut
Inputs: (start pos, end pos, cut file)
Scale cut is used for custom cuts, and scales the input

cut �le before repositioning it appropriately.
(1) �e start and end points are used to determine

the o�set, rotation, and length of the cut.

Figure 2: Input and output for a basic circle exam-
ple with o�set curve.

(2) �e input cut �le is scaled to the correct length.
�is process is memoized to improve perfor-
mance - within a single path, the length of each
cut should be the same, and multiple paths with
the same total length will also share the same
cut length.

(3) �e rescaled cut is translated and rotated into
the correct position.

3.3 Sample In/Out
As you can see in Figures 6 and 7, the custom cut so-
lution still has some serious drawbacks. Namely, it is
unable to follow the curves, and only approximates
them via interpolation. �erefore, it does not deal well
with sharp angles or tight curves. �is is also true for
the o�set cut, but to a lesser example. �e o�set cut
can deal well with tight curves, but does not take into
account corners, and therefore may have cuts which
span these corners.

4 ART
4.1 Experimentation
Hand foldability vs strength in 1/32 aluminum was
investigated. Further experimentation in steel was
planned as well, but waterjets were unavailable when
steel stock came in. �e experimental results for alu-
minum are compiled in Table 3.

4.2 Aluminum
�e primary goal of this project was to produce an
actual piece of art, a metal curved-crease origami struc-
ture. I decided to focus on the Bauhaus design which
Erik and Martin Demaine also explored, as in Figure 1.
I thought I was reasonably successful in this endeavor,



6.849’17, May 2017, Cambridge, Massachuse�s USA Landon Carter

(a) Detail of the cut pattern.

Figure 3: Input and output for a multi-circle ex-
ample with o�set curve. �is is similar to the pat-
tern waterjetted in aluminum.

Figure 4: Cut �le used in custom cut examples.
�is is an example of a cut pattern where the tab
is designed to warp and twist in a speci�c way. In
theory, this should increase the apparent ductil-
ity of the material. In practice, this design was
unsuccessful.

Figure 5: Input and output for a basic circle exam-
ple with custom cut.

(a) Detail of the cut pattern.

Figure 6: Input and output for a multi-circle ex-
ample with custom cut.

tab l cut l Results
0.020 1.50 Too weak.
0.020 0.50 Too weak. Too many cuts (time)
0.250 1.50 Too sti�, slightly bri�le
0.150 1.00 Too sti�, not far o�
0.100 1.00 Good mix. Slightly too bri�le.

Table 3: Experimentatal results for various cut
length parameters in 1/32 aluminum. Sample
cut �les are shown in Figure 8. All �les were
scaled such that 1pt=1in, so measurements can
be thought of as inch measurements. Unfortu-
nately, svg �les make this scaling somewhat non-
apparent.

though producing a curved crease origami met with
some challenges that were not exposed during the lin-
ear testing period for perforations - namely, it was now
much harder to fold everything. I found it quite a bit
more di�cult to fold the curved creases than the equiv-
alent straight creases, and also more di�cult to handle
folding multiple creases at once. I eventually found
success by starting from the middle crease out - that



Curved Crease Origami in Semi-Rigid Materials 6.849’17, May 2017, Cambridge, Massachuse�s USA

(a) Input for the classic 6.849 example.

(b) Outputwith o�set cut applied to the 6.849 example.

(c) Output with custom cut applied to the 6.849 exam-
ple.

Figure 7: 6.849 example with o�set cut and cus-
tom cut.

Figure 8: Sample input cut patterns that were
used to test various cut parameters. From top to
bottom, they correspond to the entries in Table 3.

way, I would always have a �at surface to hold with a
pair of pliers when folding.
Unfortunately, during folding, the innermost ring

tore o�. I was afraid of this, since I was using alu-
minum, which is not the most ductile material, and
because my testing had shown a possibility for crack-
ing during even the course of a dozen or so fold/unfold
motions. Another factor likely contributing to the fail-
ure of the inner ring was the fact that it had a smaller
curvature diameter than any of the other rings - this

put extra stress on the tabs, especially in the direction
perpendicular to the normal direction - they were �exed
along the tab width, instead of the tab length.
Despite this, I wound up with a very pre�y piece of

art, and observed it following the same folding behav-
ior as paper - the 360 degrees contracted as each ring
formed a cone, exactly as expected. I was able to create
a simple “rollercoaster” loop that looks quite nice as a
desk ornament.

4.3 Steel
A�er �nishing the example in aluminum, I wanted to
create another piece in steel, including welding mul-
tiple of them together to achieve a ¿360 degree total
curvature, as Erik and Martin Demaine did in many of
their curved crease origami pieces. Unfortunately, by
the time my steel arrived, both of the waterjets that I
have access to on campus were down for maintenance
- likely from other students also trying to �nish their
�nal projects in the last week of school. I was incredibly
disappointed by this, because I was honestly looking
forward to seeing how ¿360 degrees of curvature would
look, and applying all of the lessons I learned when
folding the �rst aluminum example. I still have the
aluminum, so I’ll email you once one of the waterjets
comes back online and I manage to actually cut out a
pa�ern. I realize that won’t be able to count for this
project, but it’ll be beautiful and I already have the
material.
I was excited for steel due in particular to the be�er

ductility, which would help prevent the cracking I saw
in the aluminum example, and for the easier chance
to weld multiple pieces together. Any cracks that did
appear could also be welded back together. �ough
aluminum can be welded, it is much more di�cult, and
nearly impossible for thin aluminum. Even my best
welder friends didn’t think they were capable of weld-
ing aluminum less than 1/8” thick.

5 CONCLUSIONS
Overall, this project took quite a bit longer than I ex-
pected. �e so�ware was more di�cult to write than I
had anticipated, especially because the documentation
of the Python library I used to interface with SVG’s
was poor - in particular, I had to read through the source
code to discover a method to set the numerical toler-
ances so that my code would run in a reasonable time.



6.849’17, May 2017, Cambridge, Massachuse�s USA Landon Carter

(a) �e aesthetics were signi�cantly improved with a
bit of extra care bending back wrinkled sections and
sandblasting the piece.

Figure 9: Loop-de-loop in curved crease metal
origami.

Figure 10: �e N51 waterjet went down for main-
tenance right as my steel arrived, so I was unable
to cut a pattern out of steel. �e Makerworks wa-
terjet has been down for the past 3 or 4 weeks, so
I wasn’t able to use that either. I was very sad to
discover this.

Before se�ing the tolerance to 1e-3, it was set by de-
fault to 1e-12. Before the change, my o�set code on
the multi-circle input would take about 5 minutes to
run, and a�er the change, my o�set code took about
3-5 seconds. Ultimately, I was fairly happy with how
general the so�ware can be - the so�ware suite can be
used with any svg input �le, whereas I had originally
planned to just iterate in Solidworks and focus more
on the physical implementation. By focusing on the
so�ware, I was able to create a tool that can be used
to produce cut pa�erns for any origami. �is will be
useful for future work in metal origami, especially by
hobbyists that don’t have access to CNC bending ma-
chines. I have wri�en a comprehensive readme, and



Curved Crease Origami in Semi-Rigid Materials 6.849’17, May 2017, Cambridge, Massachuse�s USA

the code is all located at my Github repo. �e Python
code has also been a�ached as Appendix A.

6 FUTUREWORK
One of the pieces of so�ware I wanted to implement,
but did not have time to implement, was a converter
from FOLD ↔ SVG. �is would increase compatibil-
ity with other origami programs, though only slightly,
since an unfolded representation would still be neces-
sary. I also spent an undue amount of time looking into
unfolding algorithms, and found O’Rourke’s review ar-
ticle [4] very informative (namely, there are no known
good algorithms, and it is not even known if all convex
polyhedra are unfoldable). I considered implementing
a slow algorithm to test all possible unfoldings for a
speci�c input (equivalent to testing every spanning tree
on the polyhedral edge graph, which is not actually that
large - the Matrix-Tree theorem allows you to calcu-
late the number of spanning trees for a graph). Testing
each unfolding would take O(n log(n)) time by sorting
the resultant edges before comparing them. �en, the
locality of comparison can be preserved, very similarly
to the convex hull algorithm. I may implement this, as
well as the FOLD↔ SVG converter, in the future.
Another aspect of the project which I did not have

time to explore was the extension to wood and other
materials, especially laser-cu�able materials. I think
that cut pa�erns for these materials could be created
by modifying the o�set-cut method to produce multi-
ple (3-6) parallel o�set cuts. �e di�culty here would
be ensuring that the tabs don’t line up, otherwise the
connection would still be connected by a single bri�le
member. A custom cut �le could also potentially work,
though the same di�culty would occur, in addition to
the di�culties of approximating curves with straight
lines.

ACKNOWLEDGMENTS
I would like to thank the 6.849 sta� for their helpful
comments on the project proposal and presentations,
which provided valuable direction in completing this
project. I would also like to thank them for an incredibly
fun and engaging class - I truly enjoyed it, and am
looking forward to taking 6.851 in the fall!

REFERENCES
[1] Erik D. Demaine, Martin L. Demaine, David A. Hu�man, and

Duks Koschitz. 2010. Reconstructing David Hu�man’s legacy
in curved-crease folding. Origami: Proceedings of the 5th
International Conference on Origami in Science, Mathemat-
ics, and Education 5 (2010). h�p://erikdemaine.org/papers/
Hu�man Origami5/paper.pdf

[2] Erik D. Demaine, Martin L. Demaine, David A. Hu�man,
Duks Koschitz, and Tomohiro Tachi. 2015. Characteriza-
tion of Curved Creases and Rulings: Design and Analysis
of Lens Tessellations. CoRR abs/1502.03191 (2015). h�p:
//arxiv.org/abs/1502.03191

[3] Duks Koschitz. 2014. Computational Design with Curved
Creases: David Hu�man’s Approach to Paperfolding. Ph.D.
Dissertation. Massachuse�s Institute of Technology.

[4] Joseph O’Rourke. 2008. Unfolding Polyhedra.
(2008). h�ps://pdfs.semanticscholar.org/5395/
012766afda5b9d40bbb62b335bc04de958d7.pdf

https://github.com/lycarter/6.849-curved-creases
http://erikdemaine.org/papers/Huffman_Origami5/paper.pdf
http://erikdemaine.org/papers/Huffman_Origami5/paper.pdf
http://arxiv.org/abs/1502.03191
http://arxiv.org/abs/1502.03191
https://pdfs.semanticscholar.org/5395/012766afda5b9d40bbb62b335bc04de958d7.pdf
https://pdfs.semanticscholar.org/5395/012766afda5b9d40bbb62b335bc04de958d7.pdf


6.849’17, May 2017, Cambridge, Massachuse�s USA Landon Carter

A SVG TOOLS.PY

1 """SVG tools for curved crease origami."""
2 # disable warnings about variable names
3 # pylint: disable=C0103
4

5 import json
6 import cmath
7 import math
8 import sys
9 import svgpathtools as svg
10

11 def memodict(f):
12 """ Memoization decorator for a function taking a single argument.
13 From http://code.activestate.com/recipes/578231-probably-the-fastest-

memoization-decorator-in-the-/
14 """
15 class memodict(dict):
16 def __missing__(self, key):
17 ret = self[key] = f(key)
18 return ret
19 return memodict().__getitem__
20

21 def read_json_params(param_file):
22 with open(param_file, 'r') as f:
23 params = json.loads(''.join(f))
24 return params
25

26 def read_svg(input_svg_file):
27 """Reads an svg file and returns a list of svg path objects."""
28 paths, attributes = svg.svg2paths(input_svg_file)
29 return (paths, attributes)
30

31 def partial_offset_curve(path, start_t, end_t, offset_distance, steps=10):
32 nls = []
33 diff = end_t - start_t
34 for k in range(steps):
35 t = start_t + diff*k/steps
36 offset_vector = offset_distance * path.normal(t)
37 p = path.point(t)
38 # print(p)
39 nls.append(p + offset_vector)
40 connect_the_dots = [svg.Line(nls[k], nls[k+1]) for k in range(len(nls) -

1)]
41 offset_path = svg.Path(*connect_the_dots)



Curved Crease Origami in Semi-Rigid Materials 6.849’17, May 2017, Cambridge, Massachuse�s USA

42

43 return offset_path
44

45 @memodict
46 def scale_cut_file(input_tuple):
47 (scale, cut_file) = input_tuple
48 new_file = svg.Path()
49 for path in cut_file:
50 new_file.append(type(path)(*[point*scale for point in path]))
51 return new_file
52

53 def scale_cut(start_pos, end_pos, cut_file):
54 print(type(start_pos))
55 print(start_pos)
56 vec = end_pos - start_pos
57 r, theta = cmath.polar(vec)
58 (xmin, xmax, ymin, ymax) = cut_file.bbox()
59 R = xmax - xmin
60 scale = float(r)/R
61

62 mid_pos = (start_pos + end_pos)/2.0
63

64 new_file = scale_cut_file((scale, cut_file))
65

66 center = (scale*(xmin+xmax)/2.0) + (scale*(ymin+ymax)/2.0)*1j
67

68 new_file = new_file.rotated((180/math.pi)*theta, center)
69 new_file = new_file.translated(mid_pos - center)
70

71 return new_file
72

73 def cut(input_svg, params, cut_file=None):
74 print('beginning cuts')
75 l_range = params['cut_length']
76 t_range = params['tab_length']
77

78 if cut_file is None:
79 positive = svg.Path()
80 negative = svg.Path()
81 else:
82 cut_paths = []
83

84 for path in input_svg:
85 print('starting a path')
86 # calculate number of cuts



6.849’17, May 2017, Cambridge, Massachuse�s USA Landon Carter

87 pathlength = float(path.length(error=1e-3))
88 maxcuts = pathlength/(l_range[0]+t_range[0])
89 mincuts = pathlength/(l_range[1]+t_range[1])
90 ncuts = int((mincuts + maxcuts)/2)
91 if ncuts == 0:
92 print path
93 print pathlength
94 ltotal = pathlength/ncuts
95 l = max(ltotal - (t_range[0] + t_range[1])/2, l_range[0])
96 t = ltotal - l
97 print('there are %s cuts' % ncuts)
98

99 # accumulate segments
100 for i in range(ncuts):
101 print("%s/%s" % (ltotal*i, pathlength))
102 cut_start = path.ilength(ltotal*i, s_tol=1e-3, error=1e-3)
103 cut_end = path.ilength(ltotal*(i+1) - t, s_tol=1e-3, error=1e-3)
104 if cut_file is None:
105 positive.append(partial_offset_curve(path, cut_start, cut_end

,
106 params['cut_width']/2))
107 negative.append(partial_offset_curve(path, cut_start, cut_end

,
108 -params['cut_width']/2))
109 else:
110 cut_start = path.point(cut_start)
111 cut_end = path.point(cut_end)
112 cut_paths.append(scale_cut(cut_start, cut_end, cut_file))
113 print('cut a path')
114

115 if cut_file is None:
116 print('number of segments: %s' % len(positive))
117 else:
118 print('number of segments: %s' % len(cut_paths))
119

120 if cut_file is None:
121 cut_paths = []
122 for i in range(len(positive)):
123 pos_path = positive[i]
124 neg_path = negative[i]
125 pos_path.append(svg.Line(pos_path[-1].end, neg_path[-1].end))
126 pos_path.extend(neg_path[::-1])
127 pos_path.append(svg.Line(neg_path[0].start, pos_path[0].start))
128 cut_paths.append(svg.Path(*pos_path))
129



Curved Crease Origami in Semi-Rigid Materials 6.849’17, May 2017, Cambridge, Massachuse�s USA

130 return cut_paths
131

132

133 if __name__ == '__main__':
134 """ Usage: python svg_tools.py params.json in.svg out.svg """
135 cut_param_file = sys.argv[1] if len(sys.argv) > 1 else 'params.json'
136 input_svg_file = sys.argv[2] if len(sys.argv) > 2 else 'in.svg'
137 output_svg_file = sys.argv[3] if len(sys.argv) > 3 else 'out.svg'
138

139

140 params = read_json_params(cut_param_file)
141 input_cut_file = params['cut_file']
142

143 (input_svg, svg_attributes) = read_svg(input_svg_file)
144 print input_svg
145

146 if input_cut_file:
147 (input_cut, cut_attributes) = read_svg(input_cut_file)
148 print input_cut[0]
149 output_paths = cut(input_svg, params, input_cut[0])
150 else:
151 output_paths = cut(input_svg, params)
152

153 svg.wsvg(output_paths, 'r'*len(output_paths), filename=output_svg_file)


	Abstract
	1 Introduction
	2 Curved Creases
	3 Software Package
	3.1 Parameter Input
	3.2 Software Package Operation
	3.3 Sample In/Out

	4 Art
	4.1 Experimentation
	4.2 Aluminum
	4.3 Steel

	5 Conclusions
	6 Future Work
	Acknowledgments
	References
	A svg_tools.py

