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Abstract
In this thesis, I designed, implemented, and optimized an algorithm to solve the
circuit-routing problem, optimizing the solution for exact correctness in a low aspect
ratio scenario, as opposed to approximate correctness in high aspect ratio scenarios,
where topological approaches are typically applied. I applied this algorithm to 3D
printed hydraulically actuated robots, though it has additional applications in circuit
routing for PCB assembly, FPGA interconnect optimization, fiber optic routing, and
other routing applications. The performance of the algorithm is discussed, profiled,
and tuned from an algorithmic perspective, with further improvements suggested.
The effect of starting conditions on the performance of the algorithm is discussed
theoretically and analyzed in real-world performance. Overall, the algorithm is shown
to provide exactly correct results and perform adequately over a range of starting
conditions useful for 3D printed hydraulic fluid pipes.
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Chapter 1

Introduction

The circuit routing problem is: given n pairs of coordinates (x1,i, y1,i, z1,i), (x2,i, y2,i, z2,i),

i ∈ 1 . . . n, on a 3D grid with dimensions x × y × z, find the set of shortest paths

(p1, p2, . . . pn) of points connecting these coordinates such that for all vertices, if i 6= j,

v ∈ pi then v /∈ pj (eg, the paths do not intersect). Here, the set of shortest paths

is the set which has the shortest total length (where length is the sum of pairwise

Euclidean distances of consecutive elements).

This problem has numerous real-world examples, such as its namesake: circuit

routing for PCB assembly, as well as FPGA interconnect optimization and 3D IC

design optimization. Other applications include the application which inspired this

work - routing hydraulic fluid pipes throughout 3D-printed hydraulically actuated

robots, as well as other large-scale physical applications such as routing fiber optics,

underground tunnels, and similar.

Chapter two describes the Multi-Path A* (MPA*) algorithm and proves its cor-

rectness in exactly solving the circuit-routing problem.

Chapter three discusses the application of MPA* to hydraulically actuated 3D

printed robots.

Chapter four discusses the theoretical and measured performance of MPA*, as

well as both implemented and future optimizations. Code profiling tools and bench-

marking are employed to direct optimization efforts.

Chapter five summarizes the results and proposes opportunities for future work.
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1.1 Related Work

There are many algorithms [2, 3, 4, 5, 6, 7] which approximate the circuit-routing

problem, especially for cases where x, y � z, which is the case most frequently seen

for 2.5D applications, such as routing traces in a PCB. The vast majority of these al-

gorithms focus on the case where z = 2, and in particular where the top layer contains

purely x-oriented wires and the bottom layer contains purely y-oriented wires. Other

variants include the via minimization problem in the constrained (topology predeter-

mined), or unconstrained (topology optimized at runtime) flavors [8]. One particular

variant of the 2-layer version called Dogleg Channel Routing has been proven to be

NP-Complete [9], and it would be unsurprising to find that most variants of the

problem, including the full-3D circuit routing problem, are NP-complete, but further

explorations into this are beyond the scope of this thesis. More modern extensions of

these algorithms include photonic waveguide routing [10], as well as many heuristic

approximate solutions for professional PCB design software, FPGA design software,

and 3D IC design software.

For 3D-printed robots with hydraulic fluid channels, the assumption that x, y � z

is not valid, and the 2-layer fixed-orientation algorithms as well as via minimization

algorithms all perform inadequately for routing these hydraulic fluid channels. Such

robots are described by MacCurdy et al [11]. Solving this problem where x, y 6� z

also has applications in 3D-printed electronics and optics [12, 13].

16



Chapter 2

Multi-Path A*

2.1 Algorithm Overview

MPA* has been implemented in Python, focusing on memory efficiency by imple-

menting data structures lazily when possible. This includes a re-implementation of

the lazy optimizations introduced by Koenig et al in Lifelong Planning A* [1]. The

overall graph search section’s implementation is also lazy, generating children nodes

from parent nodes only as needed.

At a high level, MPA* evaluates each path as an independent Lifelong Planning

A* (LPA*) search [1], adding constraints (by marking edges as impassable) in a

branching fashion for replanning steps, while also maintaining a priority queue of

which set of constraints is most likely to lead to an optimal solution, and evaluating

in order to search the constraint space efficiently. Using LPA* for each path allows

fast replanning when a constraint is added.

MPA* begins in InitializeMPA() by initializing an LPA* search for each of the

paths. After initializing these, MPA* inserts the list of LPA* searches into a priority

queue, U , which orders LPA* lists to evaluate based on the minimum cost they could

achieve.

During the evaluation phase, ComputeShortestPaths(), MPA* calls

17



ProcessLPAList(), which computes the paths for the LPA* list at the top of the

priority queue, then determines the cost of the set of paths generated. Each execu-

tion of this beyond the first one constitutes a “replanning" step. For each pair of

paths, MPA* calls CheckOrBranch(), which determines if the two paths intersect or

come within a minimum distance (the diameter of our pipes). If the two paths inter-

sect, the edges at fault for each path are identified. In each branch direction, an edge

is marked impassable for the corresponding LPA*, and then the modified LPA* list

is inserted into the priority queue with a cost equal to the cost of the parent LPA*

list that has just been evaluated.

One important note for the correctness of MPA* is that adding a constraint to

an existing LPA* will not decrease its cost - this is a guarantee provided by LPA*.

Therefore, adding a constraint to one LPA* out of a list of LPA* searches will not

decrease the cost of the set of paths generated. Thus, once we find a set of constraints

which produces non-intersecting paths, we have an upper bound on the minimum

possible cost of routing the paths.

After finding a set of constraints which produces a valid set of paths, MPA*

updates minCost and best in line 7 of ComputeShortestPaths(). As discussed, this

sets an upper bound on the minimum cost, so in order to find the absolute minimum

cost, MPA* simply needs to evaluate each remaining LPA* list in the priority queue

which could improve the upper bound. If no valid path is ever found, the priority

queue will empty after exhaustively searching the entire constraint space, and MPA*

will return None, indicating that there is no set of paths which is nonintersecting.

18



procedure InitializeMPA(desiredPaths):
1 initialLPAlist = [∅]
2 for (start, goal) ∈ desiredPaths:
3 initialLPAlist.append(InitializeLPA(start, goal))
4 U .Insert(initialLPAlist, 0)
procedure ComputeShortestPaths():

1 minCost =∞
2 best = None
3 while U .TopKey() < minCost:
4 LPAlist = U .Pop()
5 (tmpPaths, cost) = ProcessLPAList(LPAlist)
6 if tmpPaths 6= None:
7 update minCost, update best

8 return best

procedure ProcessLPAList(LPAlist):
1 paths = [ ]
2 for LPA ∈ LPAlist:
3 LPA.ComputeShortestPath()
4 paths.append(LPA.GetPath())
5 c = ∑

p∈paths PathCost(p)
6 for i ∈ range(length(paths)):
7 for j 6= i ∈ range(length(paths)):
8 if !CheckOrBranch(LPAlist, paths, i, j, c):
9 return (None, ∞)

10 return (paths, c)
procedure CheckOrBranch(LPAlist, paths, i, j, c):

1 if e1 ∈ paths[i] intersects with e2 ∈ paths[j]:
2 split1 = LPAlist[i].MakeEdgeImpassable(e1)
3 split2 = LPAlist[j].MakeEdgeImpassable(e2)
4 U .Insert(split1, c)
5 U .Insert(split2, c)
6 return False
7 return True

Algorithm 1: Multi-Path A* (MPA*).

2.1.1 LPA*

Lifelong Planning A* (LPA*) [1] is an incremental version of A* that allows for
efficient path replanning when edge weights are updated. See Algorithm 2 for an
overview.

LPA* maintains two estimates of the goal distance: g(s) and rhs(s). g is updated
in the same way it would normally be for A*, and rhs satisfies the following invariant
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rhs(s) =

0 s = sgoal

mins′∈P red(s)(g(s′) + c(s′, s)) otherwise

If g(s) = rhs(s), s is locally consistent, and is locally inconsistent otherwise.
U is a priority queue that LPA* maintains with locally-inconsistent states. The
keys for the priority queue are k = [min(g(s), rhs(s)) + h(s), min(g(s), rhs(s))], and
are sorted lexicographically. LPA* proceeds by popping states off of the priority
queue and recalculates its g-value - if the state is overconsistent (g(s) > rhs(s)), it
sets g(s) = rhs(s), and if the state is underconsistent, it sets g(s) = ∞ and calls
UpdateVertex(s) to propagate and resolve any potential changes. LPA* stops when
sstart is locally consistent.

procedure CalculateKey(s):
1 return [min(g(s), rhs(s)) + h(s, sgoal); min(g(s), rhs(s))]
procedure InitializeLPA():

1 U = ∅
2 ∀s ∈ S : rhs(s) = g(s) =∞
3 rhs(sstart = 0
4 U.Insert(sstart, CalculateKey(sstart)
procedure UpdateVertex(u):

1 if u 6= sstart:
2 rhs(u) = mins′∈P red(u)(g(s′) + c(s′, u))
3 if u ∈ U :
4 U.Remove(u)
5 if g(u) 6= rhs(u):
6 U.Insert(u, CalculateKey(u)))
procedure ComputeShortestPath():

1 while U.TopKey() < CalculateKey(sgoal) || rhs(sgoal 6= g(sgoal)):
2 u = U.Pop()
3 if g(u) > rhs(u):
4 g(u) = rhs(u)
5 ∀s ∈ Succ(u) : UpdateVertex(s)

else:
6 g(u) =∞
7 ∀s ∈ Succ(u) ∪ {u} : UpdateVertex(s)

Algorithm 2: Lifelong Planning A* (LPA*) [1].

2.1.2 Priority Queue Considerations
There are two places where a priority queue is utilized in MPA*: the overall priority
queue for LPAlist’s, U , and within the LPA* subroutine for storing nodes.
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In the first instance, the queue needs to support insert, pop, and topKey. This
is simple to implement with good performance - a min heap will provide O(log n)
insert and pop and O(1) topKey.

In the second instance, the queue needs to support insert, pop, top, contains,
and remove. This is much more complicated to implement with good performance. A
min heap, even augmented with a hashtable, will have O(n) performance on remove.
Because of LPA*’s particular usage pattern, insert, pop, and remove are called a
nearly identical number of times, so their performance must be balanced. Table 2.1
provides a comparison of performance characteristics of different data structures.
Note that although Fibonacci heaps typically lead to superior priority queue perfor-
mance, it does not support remove without significant modification and extension.

Table 2.1: Comparison of data structure performance for use in LPA* priority queue

Data Structure insert pop contains remove
binomial heap O(1) O(log n) O(n) O(n)

binomial heap + hashtable O(1) O(log n) O(1) O(n)
array O(1) O(n log(n)) O(n) O(n)

array + hashtable O(1) O(n log(n)) O(1) O(n)
linked list O(n) O(1) O(n) O(n)

linked list + hashtable O(n) O(1) O(1) O(1)
red-black tree O(log n) O(log n) O(log(n) O(log n)

red-black tree + hashtable O(log n) O(log n) O(1) O(log n)
treap O(log n) O(log n) O(log n) O(log n)

treap + hashtable O(log n) O(log n) O(1) O(log n)
nested lazy-length lists O(n1/3) O(1) O(n1/3) O(n1/3)

nested lazy-length lists + hashtable O(n1/3) O(1) O(1) O(n1/3)

2.1.3 Caching
In the procedure CheckOrBranch(), MPA* must make two copies of the LPAlist to
be reinserted into U . In practice, this can be a tricky operation - one simple solution
is just to perform a deepcopy of LPAlist. However, this is very slow. Furthermore, in
different branches of MPA*, the same LPA may be produced convergently. Therefore,
it would be nice to provide a global cache of LPA’s. Therefore, a global cache has
been added to MPA*, with keys of the set of impassable edges and nodes. The small
amount of overhead to compute a key for each LPA is more than outweighed by the
speedup of reduced computational redundancy.

It is also possible for identical LPAlists to be convergently generated - suppose
that LPA1, LPA2, and LPA3 all contend for a single node. In one split, LPA1 and
LPA2 will independently be denied access to the node. In further splits of each of
those branches, LPA2/LPA3 and LPA1/LPA3 will be split to form 4 total branches.
However, two of them will have LPA1 and LPA2 with blocked access to the node.
While we could introduce one more layer of caching, on LPAlist’s, the chances of
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convergent LPAlists is small, and the lower caching level will prevent most of the
redundant effort. The primary effect will be that U will grow unnecessarily, but even
this does not place a significant strain on memory resources, since the LPAs within
the redundant LPAlists will correctly be shared without duplication.

2.2 Algorithm Correctness
To argue the correctness of MPA*, it is sufficient to argue that MPA* will exhaus-
tively evaluate all relevant sets of constraints, and to note that LPA* guarantees the
optimality of the paths generated given a set of constraints, as proved in Koenig’s
original paper [1]. If MPA* evaluates all relevant sets of constraints, it must find the
best one.

In particular, note that the optimal path can be generated by any set of con-
straints which includes or implies a minimum set of constraints. Essentially, it is
possible to add additional constraints which do not affect the solution LPA* returns.
Therefore, the optimal solution can be achieved by adding arbitrary constraints to
the unconstrained state, so long as the constraints do not affect the optimal solution.

During our branching phase, we create two new branches, each with one addi-
tional constraint. Importantly, in any non-intersecting solution (not just the optimal
solution), at least one of these constraints can be present, because any set of paths
which violates both constraints will be intersecting. Therefore, no branching opera-
tion will eliminate the optimal solution. Because a branch terminates only when a
valid solution is found, and because that valid solution is the optimal solution given
that set of constraints, MPA* guarantees that the optimal solution for that branch
will be found. And finally, since the root branch begins with no constraints, it does
not eliminate anything, so all states are children of the root branch. Therefore, the
globally optimal solution is part of the root branch, which implies that MPA* will
find the globally optimal solution.

2.3 Algorithm Implementation
All aspects of the algorithm were implemented in Python. Aside from the underlying
data structures of certain priority queue implementations, and the distance-between-
edges function, all pieces were newly implemented for this project. Of note, this is
the first Python implementation of LPA* that we are aware of, as well as the first
n-D implementation (or indeed, the first non-2D implementation) that we are aware
of.

For a full code listing, please see Appendix A.

2.3.1 LPA*
LPA* is implemented as class LPA, with class-wide g and rhs dictionaries. Nodes
are created lazily via the StateFactoryInterface interface. The public methods for
LPA and StateFactory are described in tables 2.2 and 2.3 respectively. Within LPA,
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nodes are stored as States, with only a single public method: pred, which returns
the neighbors (predecessors) of the state. Internally, it stores its own position and
LPA* key, and implements comparability methods so that they can be sorted by
key (tiebreaking by position, an important feature for red-black trees or treaps), and
equality checked by position. See Appendix A.3 and auxiliary file in Appendix A.4
for the implemented code.

Table 2.2: Public methods for LPA

Method Description
computeShortestPath() Corrects over- and under-constrained nodes

according to LPA* rules.
getShortestPath() Calculates and returns the shortest path

based on the current node costs.
makeNodeImpassable(pos) Sets a cost of ∞ for all edges leading to pos.
makeEdgeImpassable(edge) Sets a cost of ∞ to edge.
getConstraints() Returns a tuple of (impassable_nodes,

impassable_edges).

Table 2.3: Public methods for StateFactoryInterface

Method Description
makeOrGetStateByPos(pos) Checks an internal hashtable for the presence

of a node at pos, and creates one otherwise.
Returns the relevant state.

updateState(state) Sets the internal hashtable of state to point
to state. This is useful for maintaining con-
sistency when g and rhs are updated.

In order to instantiate an LPA*, a child class of LPA must be implemented (as
well as a State child class and StateFactory child class), since the default class does
not have makeNodeImpassable(pos) or makeEdgeImpassable(edge) implemented.
State does not have pred implemented, and StateFactory is also just an interface.
These child classes are implemented as FluidLPA, StateFactory, ande NodeState,
respectively. Most of these implementations is very straightforward, and the code
can be found in Appendix A.2. Special care and testing were taken to ensure that
FluidLPA instances could be deepcopy’d correctly and efficiently, and to ensure that
getConstraints would work with the caching layer of MPA*.

2.3.2 Priority Queue
As discussed in Section 2.1.2, the priority queues used in LPA* heavily affect the
performance. Multiple priority queues were implemented and benchmarked, the full
performance results of which can be seen in Section 4.4.1. In order to facilitate
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benchmarking, a common interface was defined: Queue. The public methods are
described in table 2.4.

Table 2.4: Public methods for Queue

Method Description
insert(item) Inserts item into the underlying data struc-

ture.
pop() Removes and returns the top item.
remove(item) Searches for and removes item from the un-

derlying data structure.
top() Returns the top item without removing it.
topKey() Returns the key of the top item without re-

moving it.
__contains__(item) Returns whether is in the data structure.
__len__() Returns the number of items in the data

structure. Used only for debugging, bench-
marking, and printing progress updates.

The data structures implemented were:

• Binomial heap augmented with hashtable, using Python’s heapq and set. This
was the first version implemented, and was used for initial benchmarking. This
had O(1) insert, O(log n) pop, and O(n) remove. See Appendix A.5.1.

• Linked list augmented with hashtable, with elements of the hashtable pointing
to elements of the linked list. This allowed for O(1) pop and remove, but O(n)
insert. See Appendix A.5.2.

• Array augmented with hashtable. Though this only had O(n log n) pop and
O(n) remove, with O(1) insert and with excellent amortized performance from
Python’s built-in list and sort, this still performed reasonably well. See Ap-
pendix A.5.3.

• Treap augmented with hashtable, using treap [14]. This was the first high-
performance data structure used, with O(log n) performance on all relevant
methods. However, Cython extensions proved less portable than pure Python.
See Appendix A.5.4.

• Nested lazy-length lists augmented with hashtable, using sortedcontainers
[15]. This is a particularly interesting one. Although asymptotically slower
than a treap or Red-Black tree, the nested lazy-length lists take advantage of
Python’s extremely well-optimized list performance in the same manner that
the array augmented with a hashtable did, and performed better in practice,
and had a (constant factor) smaller memory footprint. With certain starting
conditions, it is expected that Red-Black trees augmented with a hashtable
would be optimal. See Appendix A.5.5.
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Figure 2-1: Dependency graph of MPA* private methods.

2.3.3 MPA*
Finally, MPA* was implemented. The only public methods are __init__(desired_routes,
valid_region_func) and findSolution(). __init__ takes a list of tuples of (start, goal)
positions and a function which evaluates positions to determine if they are within the
defined grid boundary. The private methods are described in Table 2.5, and their
dependency graph is shown in Figure 2-1.
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Table 2.5: Private methods for MPA*

Method Variables Description
_processFlpaList flpa_list For each FluidLPA in flpa_list, execute

LPA*. Call the collision-checking method on
each pair of FluidLPAs.

_checkCollisionFree flpa_list,
flpa_index_1,
flpa_index_2,
path_1,
path_2,
flpa_cost

Check whether path_1 and path_2 intersect,
and if they do, split and reinsert into the pri-
ority queue.

_checkEdgeCollision edge_1,
edge_2

Checks whether edge_1 and edge_2 come
within a specified range. The range can be
set to allow or disallow certain configurations
based on the tube diameter versus the grid
size.

_splitFlpaPos flpa_list,
flpa_index_1,
flpa_index_2,
bad_node,
flpa_cost

Splits the specified FluidLPAs in flpa_list
at bad_node.

_splitFlpaEdge flpa_list,
flpa_index_1,
flpa_index_2,
edge_1,
edge_2,
flpa_cost

Splits the specified FluidLPAs in flpa_list
at edge_1 and edge_2, respectively.

_splitSinglePos flpa_list,
flpa_index,
bad_node

Adds bad_node as an impassable node for the
specified FluidLPA, and looks up the result-
ing set of constraints in the FluidLPA cache,
or creates a new FluidLPA via deepcopy.

_splitSingleEdge flpa_list,
flpa_index,
edge

Adds edge as an impassable edge for the
specified FluidLPA, and looks up the result-
ing set of constraints in the FluidLPA cache,
or creates a new FluidLPA via deepcopy

_queueInsert flpa_list_1,
flpa_list_2,
flpa_cost

Inserts the two new FluidLPAs into the pri-
ority queue with cost flpa_cost.

_hashConstraints constraints Sorts and hashes constraints.
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Chapter 3

Applications to
Hydraulically-Actuated 3D-Printed
Robots

3.1 Introduction

Designing and building mechanisms for automated systems, including robots, is cur-
rently a labor-intensive process that requires expert-level decision making at all stages.
Though computer-aided design (CAD) software is widely used during this process,
these tools primarily aid during the design drafting phase. They require the user
to have detailed knowledge about the materials and fabrication processes that will
be used to implement the design, and critically, these material and fabrication tool
choices dictate design choices that must be manually embedded within the mechanical
drawings by the designer. Furthermore, once the initial design is complete, there are
no guarantees that any particular part can actually be fabricated. Issues like machine
tool path generation, or post-fabrication part mating clearances are typically handled
as a secondary process, often requiring multiple design iterations to resolve.

As an application of MPA*, we propose an alternative design framework, tailored
to the needs of roboticists and machine designers who employ kinematic linkages
in their systems. Our approach allows the topology of a kinematic system to be
succinctly described as set of nodes and connections, with parametrized features that
allow the system to be customized via an input file based on the JSON standard.
Some of these customizations are specific to the fabrication tools that these parts
will be produced with - in this work an Objet Connex 260 3D printer from Stratasys
Inc. (Eden Prairie, MN). However, because the designer specifies the topology, but
not the geometry of the parts, the designer is freed from the burden of incorporating
details of the particular fabrication approach employed into each design decision. For
this reason we refer to this work as a “Mechanism Compiler”.

Once the designer has created a desired linkage topology and specified it as a
JSON file, our algorithms automatically create the mechanical design files in the
following steps. See Figure 3-1 for a visual overview.
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1. Links, actuators and the connections between them are converted to solid mod-
els via constructive solid geometry (CSG) based on parametrized primitives

2. Individual links are ordered into layers to avoid intersections

3. Hydraulic connections (“pipes”) between linked hydraulic actuators are planned
via MPA* and implemented via CSG

4. The surface representations of the resulting files (for both the solid and liquid
materials) are exported in STL format

Figure 3-1: Schematic overview of robot design-automation system.

This system builds on previous work in which MacCurdy et al. showed that a com-
mercially available 3D printer could be used to fabricate interconnected assemblies of
hydraulically-actuated parts [11], however in that work the designs shown were cre-
ated manually via interactive CAD tools. In related work, Coros and Thomaszewski
et al. [16, 17] used an interactive design automation approach to create linkage char-
acters with desired motions. Employing libraries of predefined parameterized mod-
ules [18, 19, 20] avoids the need for user-defined geometries, allows optimization ap-
proaches to explore the space defined by the module parameterizations, and permits
complex designs to be synthesized automatically via module composition. Fuge et
al. [21] demonstrated a system based on parametrized primitives that is similar to
what we show here, however their framework did not include an actuator. It is worth
noting that in this work we do not automate the topological design of the system
of kinematic linkages, though previous work has described the synthesis of kinematic
systems via the solution of analytic expressions [22], genetic algorithms [23], nonlinear
programming [24], and state space methods [25].
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"nodes": List of doubles [x, y] specify the location

(mm) of each node

"links": List of doubles [n1, n2] specify the in-

dex into "nodes" of the two nodes that a

link connects

"bellows": List of singles li specify the index into

"links" that will be actuated

"locks": List of tuples [l1, l2, . . . , ln] specify

the index into "links" of n links that will

have a rigid-body constraint

"body_attachments": List of singles ni specify the index

into "nodes" of nodes that are fixed-

attachment points

"fluid_channels": List of tuples [n1, n2, . . . , ni](i =
2 for start/end connections) that specify

the index into "nodes" of any nodes that

will be connected by a pipe

Table 3.1: JSON input specifications for the mechanism compiler.

3.2 Kinematic Linkage Abstraction
Our system allows the topology of an actuated kinematic system to be specified with a
compact, text-based representation, and the individual geometries that implement the
system are created automatically. Rather than specify the geometries that implement
a desired kinematic system, the designer specifies an idealized skeleton model as a
system of nodes, links that connect those nodes, and constraints on the nodes and
links. This approach frees the designer from the requirement to account for design
rules (e.g.: part-part clearance requirements, wall thickness, orientation constraints)
in each individual part, accelerating the design process. MPA* is utilized to connect
specified hydraulic fluid inputs and outputs. Future improvements on the design-
automation tool could specify exclusion zones for motors, sensors, batteries, or other
electronic components, and MPA* would automatically support routing hydraulic
fluid pipes around these exclusion zones.

The design is formatted as a JSON-type text file, as specified in Table 3.1. Nodes
are points defined in 2D space, to which links connect. Constraints on nodes and links
determine the actual geometry used to implement the connections between links, what
we call a “pin”. Various pin types (see Figure 3-4 allow nodes to be free to move in
2D space, be fixed in 2D space (a “body attachment”) or serve as fluid routing paths
(a “fluid manifold”). Pin type is determined automatically, based on the constraints
(including connections) on the node. Links connect nodes and are either fixed-length
(Figure 3-2) or linear actuators, implemented as “bellows”, following [11]. The number
of bellows folds depends on the desired actuation length. Other geometric features
are parametrized and exposed to the user via a configuration file. In both cases of
the link or the linear actuator, the length and end-type depend on the constraints
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Figure 3-2: An unactuated link.

Figure 3-3: An actuated (“bellows”) link.

applied to the link and the nodes that it connects to. See Figure 3-3. Links attached
to the same node, by default, are unconstrained in rotation. However, two links
can be “locked” together, meaning that they share a rigid body constraint. This
implementation causes the links to fuse together at their ends, and impacts their
layer assignment (see Section 3.3). Finally, start and end nodes for pipes connecting
bellows in the system are specified with the “fluid_channels” tag, allowing automatic
fluid routing that yields hydraulically-linked parts via MPA*.

The geometries that implement any particular kinematic system design are syn-
thesized using Constructive Solid Geometry (CSG) [26, 27] methods. As we parse
the JSON input file our algorithms map the specification onto a set of parametrized
models for the links/bellows and pins. Specific parameters that do not depend on
the topological input file (the JSON-type file) are stored in a separate geometric pa-
rameters file that contains a set of default values optimized for fabrication using the
Connex 260 3D printer. Links/bellows are created on appropriate layers according the
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Figure 3-4: Bearing and manifold pins used in our designs.

algorithm described in Section 3.3 in order to avoid locking rotationally-unconstrained
links together. The entire synthesized set of geometries are saved in an OpenSCAD
(http://www.openscad.org) format. OpenSCAD and its CGAL tools (Computational
Geometry Algorithms Library, http://www.cgal.org/) generate the 3D-printable sur-
face model files (AMF or STL format).

3.2.1 CSG Pipe Implementation
Once MPA* has generated pipe-routing paths, they are converted to CSG by placing
hollow spheres at the points along the path, and hollow cylinders along the edges in
the path, as shown in Figure 3-5. The voids are union’d, then difference’d out so that
the internal pipe is continuous.

3.3 Layer Assignment
The input specification is 2-dimensional and, by design, does not include explicit
geometric information about the parts in the design. However, links attached to
the same node/pin that are not meant to include a rigid-body constraint must be
stacked in a layered configuration so that the physical parts do not fuse together
when 3D-printed.

The space of this stacking-assignment problem is O(lL), which grows rapidly with
the number of links (l) and layers (L), making exhaustive search impractical. We
implemented a greedy layer-assignment algorithm, intended to yield layer stacking
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Figure 3-5: Example of 9 pipes routed via MPA*.

assignments quickly. Our layer assignment algorithm greedily assigns the lowest pos-
sible layer to links and actuators in an attempt to minimize the total height so that
the final mechanism will be compact. Links which are locked together are assigned
to the same layer so that their geometry will fuse. Layers are assigned to the locked
links first, since these links provide more constraints. Once all links have had layers
assigned, the function terminates.

Though our greedy approach has worked for all of our examples, it does not yet
account for collisions between components (as might occur when a bellows link is
brought close to another link), and does not provide guarantees of optimality. Coros
et al [16] developed a boolean optimization-based layer assignment algorithm which
could be applied to our mechanism compiler so that we can account for intersections
of the bounding bounding volumes of components.

LayerSolve() takes as input a list of links which are not locked to other links, and

32



procedure LayerSolve(links, lockedLinks):
1 for linkSet ∈ lockedLinks:
2 minLayer = 0
3 for link ∈ linkSet:
4 minLayer = max(minLayer, MinUnusedLayer(link))
5 for link ∈ linkSet:
6 AssignLayer(link, minLayer)
7 for link ∈ links:
8 AssignLayer(link, MinUnusedLayer(link))

Algorithm 3: Layer assignment algorithm.

a list of link sets which are locked together. LayerSolve() greedily assigns layers to
the locked link sets first, since they are more constrained, then fills in the remaining
links at the lowest available layer.

3.4 Robot Mechanism Examples
In the following, we show some examples of kinematic linkages that can be automat-
ically generated using our mechanism compiler. Each of these designs incorporates
many moving, interconnected parts, and would have required considerable effort from
an experienced engineer if designed using a conventional CAD workflow. In contrast,
each of these examples were conceived and printed in less than a day using our method.

3.4.1 Underactuated Finger
We used the kinematic compiler to design an under-actuated finger, a relatively com-
plex kinematic linkage with 19 interconnected parts (Figure 3-6). The finger is 154
mm long in the relaxed state, and contracts to 141 mm long in the conformed state,
while wrapping around an object in its workspace. This could be refined easily by
modifying the linkage geometry input file. Note that a hose-attachment nozzle is
visible in Figure 3-6. Our mechanism compiler automatically adds a nozzle to any
body attachment points on bellows that are not connected via pipes so the bellows
can be actuated via an external pressure source.

3.4.2 Leg Systems
Leg linkages are a ubiquitous feature of mobile robots. In previous work, MacCurdy
et al. showed that a hydraulically-actuated hexapod robot can be automatically
fabricated via 3D printing [11]. That robot employed a single DC motor that pumped
fluid through the robot’s body, moving the legs in sequence. However, the design
process for this robot was done manually via interactive CAD tools and required many
stages of iteration over the course of several weeks. By applying our new mechanism
compiler, we can quickly iterate module designs for walking robots, including banks
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