
Feature Selection and Image Classification

Landon Carter and Courtney Guo

December 2015

1 Introduction

In this work, we wish to implement supervised image clustering and classification which combines
a feature extraction step with a clustering step. For the feature extraction stage, we will use two
different methods: autoencoders and convolutional neural networks. For the clustering stage, we
will use softmax layers in the respective neural nets, SVM, and k-means. We will then show the
results of these algorithms on the CIFAR-10 image classification dataset.

2 Feature Selection

2.1 Autoencoder

We used MATLAB’s built in autoencoder implementation on the CIFAR-10 dataset. An autoencoder
is a neural network used for learning efficient codings: it is trained such that its output matches
its input, but it has a hidden layer in which the number of hidden nodes is less than the number
of input nodes. Therefore, the autoencoder will learn to compress the data efficiently, and then
decode the data to match the original input. The hidden layer represents the encoding scheme,
so we can use the activations of the hidden layer as the features. Training the autoencoder is
the same as training a neural network: for each data point we can perform back propagation to
calculate the gradients of the error with respect to the weights, and then update the weights based
on that, until the error converges or we reach the maximum number of iterations. In particular
on the autoencoder, we do not need any labels - we simply try to reconstruct the input. In some
implementations, the decoding weights can be inverted from the encoding weights such that the
autoencoder is symmetric, though ours were not.

Autoencoders can also be stacked to produce deep neural nets, which can be significantly more
effective than one-layer autoencoders, since they can learn higher-order features more easily. One
nice feature is that each layer of the deep autoencoder can be trained independently relatively
quickly to give approximately-optimal results. The entire deep neural net can then undergo full
backpropagation to converge quickly to final optimal values. This method of training is significantly
faster than traditional full backpropagation, since each iteration of optimizing a layer is much
faster than full backpropagation, and the final full backpropagation step undergoes relatively few
iterations since all weights are already close to optimal values.

2.2 Convolutional Neural Network

Convolutional neural networks (ConvNet’s, or CNN’s) are a particular type of neural net which is
useful in image analysis and recognition. The distinguishing factor of CNN’s are the way they can
account for proximity in data, taking “convolutions” of small contiguous subsets of the data. This

1



is of particular importance in image processing, where large amounts of information and context
can be gained by considering neighboring pixels. The CNN we constructed was based off a standard
LeNet topology, consisting of 5 distinct blocks: 3 blocks of convolutional layer, Rectified Linear
Unit (ReLU) activation layer, and pooling layer. After these 3 blocks (9 total layers), we had a
final 4 layers which computed another convolution, ReLU, convolution, and then softmax in order
to do a final bit of convolution before extracting labels. When paired with clustering methods, the
output of the final convolution layer was sent to k-means and SVM instead of the softmax layer.

After constructing the CNN and initializing it with random values, the CNN is trained via
stochastic gradient descent (SGD).

2.2.1 Convolutional Layer

The convolution layer is the most important part of the CNN, and is what distinguishes it most
distinctly from other neural network topologies. Each convolutional neuron takes some small con-
tiguous subset of the input layer and computes

yi′′j′′d′′ =

H′∑
i′=1

W ′∑
j′=1

D∑
d′=1

fi′j′d × xi′′+i′−1,j′′+j′−1,d′,d′′

In other words, for the coordinate (i′′, j′′, d′′), the convolution is determined by applying some
filter fi′j′d to each of the inputs within H ′,W ′, D of the coordinate of interest (where the original
input size is x ∈ RH×W×D). In this formulation, only inputs to the right and below the desired
coordinate are considered (all depth dimensions - usually corresponding to different color channels
- are used), though this does not affect the results - the output nominally for coordinate (i′′, j′′, d′′)
really corresponds to the output for coordinate (i′′+H ′/2, j′′+W ′/2, d′′) in the traditional formu-
lation, which considers inputs in the range H ′/2 to the left, H ′/2 to the right, and so on. The input
is padded with a reasonable value such that edge effects are minimized. This can be demonstrated
by considering the 1-dimensional case:

Here we can see the operation of a 1-d convolution, with H ′ = 4. Some filter is applied to boxes
1-4 at each x, which is then stored in the output y. In this case, the padding is made explicit as
P− = 2, P+ = 3.

2



The filters are equivalent to the weights of normal neural networks, and are initialized randomly
within a set of reasonable values. This implementation is relatively fast, because the number of
weights is actually independent of input size - there are d′′ filters defined over an H ′ ×W ′ × D
volume, and each filter is applied across the entire input and trained across the entire input. For
example, one basic filter may learn edge-detection. One artificial filter that this can be compared
to is the Sobel filter, a convolution kernel which represents edge detection in traditional image
processing:

Gx =

−1 0 +1
−2 0 +2
−1 0 +1

 , Gy =

−1 −2 −1
0 0 0

+1 +2 +1

 ,G =
√
G2

x + G2
y

The equivalent convolution filter learned in the CNN might represent just vertical or horizontal
edges. With enough filters, many unique image features can be learned. However, as is obvious,
the use case of a single convolution layer is very limited, which is why we pair it with a ReLU and
pooling layer, and use this trio to construct a deep NN.

2.2.2 Rectified Linear Unit Layer

The ReLU layer is a simple activation layer, which computes

yijd = max{0, xijd}

This performs the same function as any other activation layer - adding nonlinearity to the NN.
In this case, a linear activation is selected due to computational speed - it is much faster to compute
a linear activation than a sigmoid, while the performance is only minimally decreased.

2.2.3 Pooling Layer

The pooling layer computes the maximum input in an H ′ ×W ′ patch:

yi′′j′′d = max
1≤i′≤H′,1≤j′≤W ′

xi′′+i′−1,j′′+j′−1,d

This is useful for selecting the dominant features within each patch and essentially sparsify the
data. Importantly, the pooling layer patches are non-overlapping, while the convolutional layers
are not. This is also useful for providing robustness to image translation - if an image is translated
by less than H ′ or W ′, the output of the pooling layer will still be the same.

2.2.4 Softmax Layer

The softmax layer is the standard classification layer discussed in class:

yijk =
exijk∑D
t=1 e

xijk

As discussed in class, this is useful for classification purposes. In other variations we tested, we
replaced this layer with k-means clustering and multiclass SVM.

3



3 Clustering

3.1 k-means

k-means clustering is an unsupervised learning algorithm that takes a dataset and attempts to
group the data into k clusters such that the sum of the distances from each point to the centroid of
the cluster that it belongs to is minimized. The algorithm works by first initializing the centroids
of k clusters, and at each step, it classifies the points based on which cluster it is closest to, and
then updates the centroids of the clusters. One of the benefits of k-means clustering is that it will
return the coordinates of the centroids of all the clusters, so for each cluster, we have a point that
is “most representative” of the cluster.

We implemented the k-means algorithm ourselves. We first tested it on the MNIST raw data,
which is a database of images of handwritten digits 0-9. Each image is grayscale and is 28 pixels
by 28 pixels, and there are 5000 images in the dataset. So each data point can be represented as a
feature vector of size 282 = 784. We ran our k-means implementation on the MNIST dataset with
k = 10, and initial centroids set equal to 10 random data points. To assign classes to clusters, for
each cluster we looked at the label with the majority vote in each cluster, and assigned that label
to that cluster. Therefore, to classify a new point, we first find out which cluster it is closest to,
and then assign it the label corresponding to that cluster. To measure performance of the k-means
clustering, we counted the number of misclassified points in the test set. For the MNIST dataset,
we got an error rate of 3695

5000 = 73.9%, suggesting that k-means does not work well on this dataset.
However, it is slightly better than random, because a random classifier would give a 90% error
rate. However, once we consider the 5 most likely labels for each data point, we have a 21.2% error
rate, so our classifier is nontrivially better than random. We compared our implementation with
MATLAB’s built-in k-means algorithm and they got almost identical results, so it is not a problem
with our implementation.

We thought one possible reason k-means doesn’t work well might be because the dimensional-
ity is too high, so we used an autoencoder to reduce the 784 features to 50, and then used k-means
on the 50 features. However, we still got a high error rate of 3570

5000 = 71.4%. Therefore, this suggests
that the MNIST data is not suited for k-means. Possible reasons for this might be because there is
a lot of overlap between clusters, so k-means cannot distinguish between them well. One other pos-
sible reason for poor performance is the highly correlated dependence between various dimensions,
such that applying a kernel or a neural network to them will separate the clusters much better.

3.2 Support Vector Machine

Support Vector Machines are supervised learning models that construct a hyperplane to separate
the dataset, classifying all points on one side of the hyperplane as belonging to one class, and all
points on the other side as belonging to the other class. SVM aims to maximize the margin of the
classification, which is the distance from the closest training point to the hyperplane. Finding the
hyperplane with maximum margin can be expressed as a quadratic optimization problem (mini-
mizing an objective while satisfying some constraints), so we can take the dual form as shown in
homework 2 to solve the optimization problem. SVM is a binary classifier, so to extend it to n
classes, we can train n one-vs-all classifiers: the ith classifier’s output represents whether or not the
point is in the ith class. We adapted our code from homework 2 to extend it to the multiclass case
by training one-vs-all classifiers. However, the code ran too slowly for our purposes, so we used an
existing implementation of SVM along with our same multiclass extension.

4



4 Results

The CIFAR-10 dataset consists of images corresponding to 10 different classes: airplane, automo-
bile, bird, cat, deer, dog, frog, horse, ship, and truck. Each image is a 32 × 32 color image, and
there are 10000 examples in the training dataset, and 10000 examples in the test dataset. We can
find the results of each combination of feature selection and clustering on the CIFAR-10 dataset.

4.1 Autoencoder

4.1.1 Autoencoder with softmax

We added a softmax layer to the autoencoder, so that the diagram of the neural network is given
below:

We can also plot the weights of the first layer of the autoencoder, to see what kind of features it
learned. We see that there is a little overfitting, because some of the nodes clearly resemble some
of the original pictures, but otherwise it seems like the autoencoder has learned some important
features.

5



Then, we can plot the confusion matrix, which shows how similar our classification is to the true
labels of the data. This plot shows all of the counts for which a data point was classified by our
classifier as belonging to class i, but it actually belongs to class j. Therefore the entries on the
diagonal are when i = j, which are the cases when our classifier was correct. We see that our
accuracy was 34% (therefore error rate was 66%), which is significantly better than random, but it
is not very good.

4.1.2 Autoencoder with SVM

We used the features extracted by the autoencoder as inputs to the one-vs-all SVM multiclass
method. On the CIFAR-10 dataset, all of the one-vs-all classifiers outputted 0 for all the data
points, so none of the points were actually classified. This meant that none of the classes were
significantly likely. Since we could not get any results for the CIFAR-10 dataset, we tried this
method on the MNIST dataset. Around half of the data points were not classified by any of the 10
SVM classifiers, but some of the data points were classified, and the accuracy was high for those
cases. If a data point was not classified by any of the 10 SVM classifiers, it gets assigned the 10th
class by default.

6



This plot is a confusion matrix, explained earlier. We can see that our classifier only predicted
classes of 1, 2, 4, 7, 9, and 10. When it did not predict 10, its accuracy was 93.9%, which is pretty
remarkable, but it predicted 10 most of the time which meant that the classifier was unsure on
most of the data points. Therefore, we see that the one-vs-all strategy for multiclass SVM does not
yield the best results, because if there is no class is more than 50% likely for a given point, SVM
will not classify the point into any class.

4.1.3 Autoencoder with k-means

We ran the k-means algorithm on features extracted using an autoencoder, but the algorithm
converged to only have one cluster. This probably means that the features extracted were not
distinct enough, so the k-means algorithm could not find two separate clusters that would be more
optimal than one cluster. From the confusion matrix below, we see that the accuracy of this is
10.3%, which is basically equivalent to random guessing. From our discussion of k-means above,
this low accuracy is expected, because k-means did not work well with MNIST, and classification
on the CIFAR-10 dataset is harder than classification on MNIST.

7



4.2 Convolutional Neural Network

4.2.1 Convolutional Neural Network with Softmax

The training of the CNN proceeded via SGD as mentioned, attempting to minimize an energy
function which essentially captured the error in training. The error and objective function for
the training data and validation data was plotted over the course of 30 epochs of training. After
about 15 epochs, it can be seen that the validation error rate has stabilized to around 20%. When
including the top 5 results of the CNN, validation error rate stabilized to less than 3% (valtop5e).
In this case, each epoch represents passing through the entire training set, or 10,000 individual
SGD steps.

8



This final error of around 20% is notable, since it is in the same ballpark as the best results
obtained for CIFAR-10, which report as low as 15% error without data augmentation (we also
don’t use data augmentation, so this is a valid comparison). This was achieved with a very similar
structure to the CNN - softmax combo we used to classify CIFAR-10, but with optimized weights
for hyperparameters such as learning rate. The same approximate structure is found in GoogLeNet,
which won the most recent ImageNet classification challenge.

4.2.2 Convolutional Neural Network with SVM

Multiclasss SVM was much more successful in clustering the feature vectors from CNN’s than au-
toencoders, reaching a final accuracy of a very disappointing 11.5% (hardly better than random
guessing). Again, label 10 was assigned by default if no other label had probability ¿50%. Interest-
ingly, labels 3 and 9 seemed popular for the SVM to predict, though it is unclear why this might
be the case, and merits future analysis.

4.2.3 Convolutional Neural Network with k-means

By taking the activations of the last convolution layer, right before the softmax layer, we obtain
a lower-dimensionality representation of our input. Rather than send this to softmax, we instead
used this as the input data for k-means clustering, where again the most common label within
each cluster was assigned to the cluster. This yielded quite decent results, with an overall 63.9%
accuracy, significantly better than any other feature extraction/classification pair except CNN with
softmax, which achieved an 80% overall accuracy.

9



5 Discussion

Convolutional Neural Networks with a softmax classifier were by far the most effective pairing of
feature extraction and classification. This makes sense - they’re the state of the art for image
classification, due to convolutional neural networks’ ability to efficiently extract contextual image
information and softmax’s kernel-like trainability. It is understandable that the more optimized
topology of the CNN would easily surpass the accuracy of the autoencoder.

Most interestingly, taking the final 64-dimensional activations of the final convolutional layer in
the CNN and using them as inputs to a k-means clustering algorithm yielded very favorable results,
achieving a very respectible 64% accuracy on CIFAR-10. This also holds potential interest, since k-
means is an unsupervised clustering algorithm, it could theoretically be used in a semi-supervised
classification task, where it would know to create a separate cluster for previously-unseen data.
The effectiveness of this strategy is tremendously amplified when feeding it outputs from a CNN
than raw data, and clustering can be done much more quickly due to the significantly decreased
dimensionality. In order to be able to tell when a new cluster is added, a regularization function
on the number of clusters would have to be introduced and the number of clusters allowed to vary.

Overall, the strategy of coupling a simple clustering algorithm to a feature extraction algorithm
was less successful than anticipated, most likely due to the very high covariance of the extracted
features, which prevents standard non-kernelized clustering algorithms from performing well. Man-
ually kernelizing a clustring algorithm was not pursued due to the difficulty in coming up with a
reasonable kernel for the artificial data. Softmax instead served as a substitute, allowing something
similar to a kernelized clustering algorithm to be learned by the NN’s.

6 Works Cited

• Learning Multiple Layers of Features from Tiny Images, Alex Krizhevsky, 2009.

• “MatConvNet - Convolutional Neural Networks for MATLAB”, A. Vedaldi and K. Lenc,

10



Proc. of the ACM Int. Conf. on Multimedia, 2015.

11


