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Abstract 

Lightsaber Training is an augmented reality game, where the user holds a device representing a 

lightsaber handle, while a lightsaber blade is projected on-screen. The user can then swing the 

handle around and attempt to hit as many objects on-screen as possible with the blade in a 

given time frame. This is accomplished via image tracking from a video feed, a wireless IMU 

embedded in the lightsaber handle, a button to extend and retract the blade, and generated 

sprites. The project’s three primary modules are the sensor data, which includes wireless 

accelerometer and gyroscope data and button inputs; video, which includes camera input and 

image thresholding; and gameplay, which includes blade projection, sprites, and game 

mechanics.  
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Overview 

We implemented an augmented reality game in which a user, wielding a lightsaber handle, 

attempts to hit objects displayed on-screen. Our project uses image tracking from a camera 

connected to the FPGA labkit and IMU data transmitted via bluetooth from the handle to project 

the lightsaber blade on-screen, overlaid against the real-time video stream from the camera. A 

button on the handle also lets the user extend and retract the blade. The user’s movements are 

continually tracked so that the projected lightsaber blade moves with the handle. Gameplay 

includes sprites that appear on-screen and a scoring system that tracks when the user hits a 

sprite with the lightsaber blade within a given time frame.  

High-Level Block Diagram 
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Part 1: Sensor Data (rsyang) 

Overview 

The first main part of our project was to wirelessly transmit data from the lightsaber handle and 

decode it on the FPGA. Specifically, the data that was transmitted was all 3 axes of the 

gyroscope and accelerometer data from the IMU (MPU9250) and the states of the blade button 

and the gyroscope drift reset button. The data was encoded by an Arduino Nano, sent out via a 

Bluetooth SMiRF Silver transmitter module, received by a Bluetooth SMiRF Silver receiver 

module, and then wired directly into the FPGA. The data was then decoded on the FPGA and 

filtered before being sent to the necessary video and gameplay modules. 

Block Diagram 
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Schematic 

 

Serial Protocol 

Serial Port Profile (SPP) 

The serial protocol used to communicate via bluetooth was SPP with zero parity bits. In other 

words, each packet in the protocol contains exactly 10 bits: 1 start bit (logic low), 8 data bits 

(LSB to MSB), and 1 stop bit (logic high). For this project, the communication rate used was 

9600 baud. 
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Data Representation 

For the IMU that we used (MPU9250), the accelerometer data ranged from -2g to +2g and the 

gyroscope data ranged from -250 deg/s to +250 deg/s. To retain some of the IMU’s precision 

but not create too much overhead, I decided to use 8-bit values to represent the magnitude of 

each axis of the accelerometer and gyroscope data. To make it easier to handle negative 

values, I included an additional 9th bit as a sign bit, where 1 indicates a negative number and 0 

indicates a positive number. 

Serial Data Encoding / Decoding Protocol 

I needed to transmit six 8-bit numbers with 1-bit signs each for the IMU data and 2 bits for the 

button data, which meant that a total of 56 bits of data needed to transmitted every cycle. Since 

it was important to know the order of the packets to decode the data, I needed to reserve the 

LSB of each packet to signal if the packet was the first packet (1) or not (0). Because of this, 

each packet could only transmit 7 bits of useful data at a time. Since there are a total of 56 bits 

of data to be transmitted, that meant that each cycle of data transmission would require 8 

packets. To split up the 56 bits of data into its 8 packets, I used the following protocol: 

 

Packet 1: [first 7 MSB of magnitude of x-axis accelerometer data] 1 

Packet 2: [first 7 MSB of magnitude of y-axis accelerometer data] 0 

Packet 3: [first 7 MSB of magnitude of z-axis accelerometer data] 0 

Packet 4: [first 7 MSB of magnitude of x-axis gyroscope data] 0 

Packet 5:  [first 7 MSB of magnitude of y-axis gyroscope data] 0 

Packet 6: [first 7 MSB of magnitude of z-axis gyroscope data] 0 

Packet 7: [LSB of accelerometer x, y, z, gyro x, y, z, respectively] [blade_button] 0 

Packet 8: [sign bit of accelerometer x, y, z, gyro x, y, z, respectively] [drift_reset] 0 
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Verilog Modules 

read_data 

The read_data module takes in the serial receiver_data and then decodes and stores 

the raw data. Specifically, the module is composed of two FSMs. The first FSM keeps 

track of the current packet number that is being read by the FPGA. Once this FSM 

detects a 1 on the LSB bit of the packet to signal that it’s the first packet, a second FSM 

is triggered to read in each bit of the packet. When all of the bits in a particular packet 

are read, the second FSM signals to the first FSM to store the each bit value in the 

corresponding variable as per the packet protocol defined in the Serial Protocol: Serial 

Data Encoding / Decoding Protocol section of this report. The outputs for this module are 

the raw data for the IMU and buttons. 

 

sample_timer 

The sample_timer module is used to signal when the FPGA should sample the value of 

a bit. The timer is signaled to start by the read_data module at the beginning of every 

packet. Then, the timer asserts the enable signal once every bit to signal the read_data 

module to read the value of the bit. After the stop bit of a packet, the timer stops running, 

i.e. the enable signal remains deasserted until the next start_timer signal from the 

read_data module. 

 

debounce 

The debounce module is used to debounce the raw button data, i.e. raw_blade_button 

and raw_drift_reset, from the bluetooth receiver. The debounced blade_button output 

signal is sent to the Gameplay part of the project (see Part 3: Gameplay), and the 

debounced drift_reset output signal is sent to the process_data module. 

 

process_data 

The process_data module is used to filter the raw accelerometer and gyroscope data 

with a moving average filter. To deal with the signed aspect of the data, the format of the 

data is converted into two’s complement, i.e. signed form, from its original 8-bit 

magnitude with a 1-bit sign bit form. Once this is done, the data is averaged and the 
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filtered average values of all three axes of the accelerometer and gyroscope data are 

outputted. These outputs are then sent to the Video part of the project (see Part 2: 

Video). This module also uses the debounced drift_reset signal to calibrate the 

gyroscope. Every time the drift_reset button is pressed, the process_data module stores 

the current gyroscope data values for all three axes as the new ‘zero’ for the gyroscope. 

This ‘zero’ value is then used as an offset for all incoming raw gyroscope data. 

Arduino 

Two Arduino Nanos are used in this project. The first Arduino is used to configure the Bluetooth 

SMiRF Silver transmitter module as the master and provide the module with data to send, as 

per the packet protocol defined in the Serial Protocol: Serial Data Encoding / Decoding Protocol 

section of this report.  The second Arduino is used to configure the Bluetooth SMiRF Silver 

receiver module as the slave. (Note: the slave Bluetooth module must be powered on before the 

master Bluetooth module in order for the modules to connect with each other.) 

 

The Github project link that contains both the transmitter and receiver Arduino code can be 

found in the Appendix. 

Logic Level Differences 

The IMU, Bluetooth modules, and FPGA all operate on a 3.3V logic level; however, the Arduino 

Nano operates on a 5.0V logic level. At first, I considered using level-shifters between all logic 

levels, but this turned out to not be absolutely necessary.  

 

The Arduino Nano accepts digital inputs as high for voltages greater than 3.0V. Since the IMU 

I2C lines were not expected to deviate very much from their specs of 3.3V logic high, the Nano 

still was able to properly read the IMU I2C input, so logic shifting was not needed there.  

 

To transmit the data wirelessly, the Nano had to send 5.0V logic level serial signals to the 

Bluetooth transmitter module. This technically was over the maximum acceptable input of the 

Bluetooth module, but it was within 1.0V of the maximum allowed voltage so the module was 

still able to function. (If this project were to be further refined, level-shifting circuitry should be 
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added between the Nano and the Bluetooth transmitter to not unnecessarily stretch the 

capabilities of the Bluetooth module.) 

 

On the receiving end, since the Bluetooth receiver was outputting the received serial signals at 

a 3.3V logic level, there was no problem with directly hardwiring these signals to the FPGA, 

which also operates at a 3.3V logic level. 

Power 

To power the transmitter circuitry in the lightsaber handle without a tether, a 9V battery is 

connected to the input of the Arduino’s onboard voltage regulators. Since the transmitter 

circuitry draws a small amount of current (on the order of a couple hundred mA), no additional 

regulators or power circuitry was needed. In addition, the battery is connected to a SPST switch 

for the user to turn on/off the lightsaber handle’s circuitry. 

 

Since the receiver circuitry is stationary and only needs to sit on the desk, the receiver Arduino 

is powered via a USB cable connected to a laptop. 

Challenges 

The biggest challenge for me was understanding SPP and developing a data protocol to 

communicate all of the IMU and button data wirelessly. First, I worked on understanding the 

Bluetooth SPP protocol by trying to send data wirelessly from the Arduino to my laptop. It took a 

while to figure out the necessary configuration for this to work. Once that was up and running, I 

had to design a packet data protocol to ensure that all the data I wanted could be transmitted in 

as few packets as possible. 

 

After I had come up with the packet data protocol, I had to first write up the transmitter Arduino 

code and make sure the data was transmitting correctly. Only after I got this working was I able 

to even start writing Verilog modules to interface with the received data as without successfully 

transmitting data, I would have no way to test my code or have enough knowledge to properly 

design my Verilog modules. 
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Once I got the Arduino code working, a lot of my time was spent refining the read_data module. 

My original design had only used one FSM to read in all 8 packets per cycle, but this ended up 

with greater than 90 states. So, I had to rethink my design to read in data and that’s how I came 

up with the nested FSM design to greatly reduce the total number of states needed. After the 

high-level design of this module was completed, it still took many cycles of refinement to 

eliminate all of the bugs, especially timing-related bugs, to properly read in the receiver data. 
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Part 2: Video Processing (lcarter) 

Overview 

The central part of this project was to process NTSC video data to extract the position and size 

of the lightsaber hilt to the gameplay module. To do this, the video was read in, buffered through 

ZBT RAM, and processed via HSV thresholding and center-of-mass averaging to determine the 

centroids of the pink and green hilt ends. This data was then passed on to the gameplay 

module. 

Block Diagram 

 

 

 

 

  

12 



 

Verilog Modules 

ntsc_decode 

This module was provided by the staff, and implements an FSM to read in NTSC data 

as 10:10:10 bit YCrCb data. 

 

ycrcb2rgb 

This module was generated by Xilinx IP Core to convert YCrCb data from the NTSC 

stream to RGB data for conversion to HSV and for display. 

 

ntsc2zbt 

This module was provided by the staff to buffer ntsc video through ZBT ram. However, 

the staff implementation buffered only 8 bits from the Y channel of the YCrCb video 

stream. Since we wanted to use color, I modified this code to buffer 18-bit RGB data 

instead. YCrCb was converted to RGB through a Xilinx IP Core module on the input, 

then ntsc2zbt was modified to store 2 pixels per address rather than 4. This allowed for 

the greater bit depth required for 18-bit RGB instead of 8-bit Y. 

 

zbt_6111 

This module was also unmodified from the staff implementation, but provided a pipelined 

ZBT ram writing module. 

 

rgb2hsv 

This module was also provided by the staff, and supplied with an IP Core divider module. 

This module converted the stored RGB data to HSV data for easier threhsholding. It is 

easier to consider thresholding over HSV than RGB, because human vision more closely 

approximates HSV than RGB. Furthermore, pink and green are further from one another 

in the HSV color space than the RGB color space, allowing for easier separation. 

 

A pair of 16 bit dividers from Xilinx IP Core was required for each instance of this module 

to perform the linear transformation. 
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hsv_threshold 

This module was the core of the video processing, taking in a stream of HSV data and 

thresholding it versus preset thresholds to detect green and pink values indicating that 

the pixel is part of the end of the lightsaber hilt. This module also performed the 

frame-averaging, which did center-of-mass averaging on the selected pixels. Pink and 

green pixels positions were averaged in x & y over each frame to determine the center of 

the x and y pixels. In future iterations, this should be replaced with proper blob detection 

- the provided NTSC cameras turned out to be noisy enough that a relatively large 

number of random pixels were included in the thresholding, even after optimizing the 

thresholding constants. It was not anticipated that the provided NTSC camera would be 

so noisy, so we figured simple center-of-mass averaging would be sufficient until testing 

it. We had further difficulties filtering for pink values especially, since the provided NTSC 

camera had quite low saturation, which made the pixel values for skin and the red end of 

the lightsaber hilt very similar, even when viewed in the HSV color space. This added a 

significant amount of noise if the Jedi user did not wear the proper hooded brown/black 

cloak. 

 

In particular, the thresholding was performed with min_hue, max_hue, min_val, and 

min_saturation. These 4 values allowed a relatively intuitive control over thresholding 

for pink and green pixels. Furthermore, Switch 6 was employed to provide an overlay of 

which pixels were being selected, along with an overlay of the x & y values selected as 

the average. This helped significantly for debugging dumb mistakes. For example, when 

writing the averaging, I initially forgot to reset x_sum and y_sum on every frame refresh, 

which was revealed by the selected x and y values increasing on every frame refresh, 

even when only a few pixels met the thresholding criteria. 

 

These 4 thresholding values were applied as follows for green: 
   assign green_detected = (in_frame && 

      cropped_hsv[23:16] > green_h_low && 

cropped_hsv[23:16] < green_h_high && 

      cropped_hsv[15:8] > green_s_low && 

cropped_hsv[7:0] > green_v_low); 
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And for pink: 
   assign pink_detected = (in_frame && 

      (cropped_hsv[23:16] < pink_h_low || 

 cropped_hsv[23:16] > pink_h_high) && 

      cropped_hsv[15:8] > pink_s_low && 

cropped_hsv[7:0] > pink_v_low); 

 

In particular, note that only in_frame pixels are allowed (in_frame was set by a simple 

cropping function). Also note that since pink is in the range of the 0/360 degree mark on 

the hue circle, values were OR’d between two extrema to include the 0/360 rollover. 

 

Originally, I had intended to put a 3-5 frame low-pass FIR filter on the centroids to 

minimize the effects of noise. However, my implementation of this had bugs that I could 

not resolve in time, and furthermore the extreme amount of noise proved too much to be 

effectively filtered out anyway. In future iterations, enabling the FIR filter based on the 

accelerometer and gyroscope data would improve stability without sacrificing latency. In 

addition, blob detection would improve robustness to input noise. 

 

A pair of 28-bit dividers was also required for each instance of this module to divide 

x_sum and y_sum by the number of pixels selected. This in particular added a significant 

amount of utilization and compile time to our project. 

 

debounce  

Debounce was used again in the video processing block, this time to debounce button 

input to adjust thresholding on the fly. Buttons 0-3, left/right, and switches 1 and 2 were 

debounced to provide control over the HSV thresholding. Switch 6 was used to select an 

overlay which showed selected pixels for green and pink thresholding, as well as the 

calculated centroids for the pink and green regions. This was invaluable for quick 

iteration. A small 20-bit clock divider was also set up to generate a ~60 Hz clock, where 

the values were incremented on the positive edge of the clock divider’s MSB. This 

allowed the thresholding values to be tuned at a quick but manageable rate. 
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display_16hex  

This module was used to display the threshold select values. Displayed on the left 8 hex 

digits were the values for the pink thresholding, while green thresholding values were 

displayed on the right 8 hex digits. This module was incredibly helpful for setting 

constants, since constants could be iterated in real-time rather than waiting for the 

6-minute compile time of our final code. Since values for thresholding were displayed on 

the hex display, we could also copy them down and feed them into our program as 

initialization values for the thresholding registers. 

 

divider & pixel_divider 

These two modules were dividers generated through Xilinx IP core, and were 16-bit and 

28-bit dividers, respectively for rgb2hsv and hsv_threshold. The especially-large divider 

was required for hsv_threshold for the corner case when every one of the pixels was 

selected, leading to an x_sum of over 2^27. Future iterations including blob detection 

rather than center-of-mass averaging could potentially remove this module, depending 

on the implementation (eg, skeletonization would not require a large divider, but simple 

connected-component thresholding on center-of-mass averaging would still require a 

large divider for the corner case of every pixel selected). These dividers necessitated a 

large delay in pixel throughput, so all hsv-corrected pixels were 22 cycles behind the 

RGB display. The effect of this was to right-shift all of the overlay data and (x,y) 

coordinates of the centroids by 18 pixels. Though the x_sum and y_sum dividers were 

larger, and thus had a larger delay (30 clock cycles, according to the Xilinx IP core 

spec), this delay was unimportant because it happened during the NTSC sync period, so 

it produced effectively no real-world latency. 

 

vram_display 

This code was also part of the staff-provided code, but modified for color. This code 

reads pixels from ZBT ram to display on the VGA monitor. It was originally written to 

display 4-pixel packed ZBT addresses as Y-only data, but I modified it to display 2-pixel 

packed ZBT addresses as 18-bit RGB data. 
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Coordination in overall ñfinallabkit.vò module 

Overall, modules were hooked together very similarly to the staff implementation of 

NTSC video display, with the addition of hsv_threshold and the corrections appropriate 

to turn the signals from Y-only into RGB-enabled. Furthermore, to provide quicker 

iterations on hsv_threshold, buttons and the fluorescent hex display were hooked in to 

allow on-the-fly adjustment of HSV thresholding values. Switch 6 was also hooked in to 

toggle overlay of the pixels selected in the thresholding module, as well as the x,y 

coordinates selected by the averaging in the thresholding module. 

Testing 

As with the gameplay module that follows, most of the testing and calibration was able to be 

performed visually. As previously mentioned, a small user interface was implemented with the 

switches, 16 digit fluorescent hex display, and buttons to allow users to tune the thresholding 

constants when switching cameras, lighting conditions, or if the module was behaving 

suboptimally otherwise. The values could be read off of the hex display and set as the 

initialization value for future iterations to prevent recalibration on every new firmware flash. 

Challenges 

The biggest challenge for me for this was modifying the ntsc code to work with color. Though I 

understood the concept, it was difficult to test changes incrementally because there was no nice 

intermediary between “working b&w” and “working color”. One interesting mistake I made was to 

originally synthesize an 8-bit input YCrCb to RGB converter, while we had 10-bit YCrCb input. 

The effect of this was to chop off the two MSB’s of each of the 3 channels, which led to a very 

psychedelic display: 
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After I had succeeded with the color NTSC conversion, the noise of the camera proved much 

higher than anticipated. This manifested as extremely noisy position estimates, even after 

careful thresholding. Setting everything up against a black backdrop and wearing black clothing 

and gloves helped significantly. Pink in particular was difficult, because the camera was 

extremely low-saturation. This manifested in skin being included in the pink position estimates. 

Even with blob detection fully working, this would have been a very difficult problem to tackle 

without simply wearing gloves. 
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